feat: 重构项目结构并添加新功能

- 新增Cloudflare AutoRAG/Vectorize集成文档
- 实现Vertex AI记忆银行功能
- 重构项目目录结构,清理无用文件
- 更新README以反映最新架构
- 添加Google ADK集成测试脚本
- 完善需求文档和设计规范
This commit is contained in:
ben
2025-08-16 10:37:11 +00:00
parent 26338d48cf
commit c4e8cfefc7
106 changed files with 12243 additions and 1839 deletions

View File

@@ -0,0 +1,275 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Memory Bank 实验脚本
测试八仙人格的长期记忆功能
"""
import os
import asyncio
from datetime import datetime
from typing import Dict, List, Any
import json
# Google GenAI 导入
try:
import google.genai as genai
from google.genai import types
except ImportError:
print("❌ 请安装 google-genai: pip install google-genai")
exit(1)
class MemoryBankExperiment:
"""Memory Bank 实验类"""
def __init__(self):
self.api_key = os.getenv('GOOGLE_API_KEY')
if not self.api_key:
raise ValueError("请设置 GOOGLE_API_KEY 环境变量")
# 初始化 GenAI
genai.configure(api_key=self.api_key)
# 八仙人格基线
self.immortal_baselines = {
"吕洞宾": {
"mbti_type": "ENTJ",
"core_traits": {
"assertiveness": 0.9,
"analytical": 0.8,
"risk_tolerance": 0.8,
"optimism": 0.7
},
"personality_description": "剑仙投资顾问,主动进取,敢于冒险,技术分析专家"
},
"何仙姑": {
"mbti_type": "ISFJ",
"core_traits": {
"empathy": 0.9,
"caution": 0.8,
"loyalty": 0.8,
"optimism": 0.4
},
"personality_description": "慈悲风控专家,谨慎小心,保护意识强,风险厌恶"
},
"张果老": {
"mbti_type": "INTP",
"core_traits": {
"analytical": 0.9,
"curiosity": 0.8,
"traditional": 0.7,
"caution": 0.6
},
"personality_description": "历史数据分析师,深度思考,逆向思维,传统智慧"
}
}
# 记忆存储(模拟 Memory Bank
self.memory_bank = {}
def initialize_immortal_memory(self, immortal_name: str):
"""初始化仙人的记忆空间"""
if immortal_name not in self.memory_bank:
self.memory_bank[immortal_name] = {
"personality_baseline": self.immortal_baselines[immortal_name],
"conversation_history": [],
"viewpoint_evolution": [],
"decision_history": [],
"created_at": datetime.now().isoformat(),
"last_updated": datetime.now().isoformat()
}
print(f"🎭 初始化 {immortal_name} 的记忆空间")
def store_memory(self, immortal_name: str, memory_type: str, content: Dict[str, Any]):
"""存储记忆到 Memory Bank"""
self.initialize_immortal_memory(immortal_name)
memory_entry = {
"type": memory_type,
"content": content,
"timestamp": datetime.now().isoformat(),
"session_id": f"session_{len(self.memory_bank[immortal_name]['conversation_history'])}"
}
if memory_type == "conversation":
self.memory_bank[immortal_name]["conversation_history"].append(memory_entry)
elif memory_type == "viewpoint":
self.memory_bank[immortal_name]["viewpoint_evolution"].append(memory_entry)
elif memory_type == "decision":
self.memory_bank[immortal_name]["decision_history"].append(memory_entry)
self.memory_bank[immortal_name]["last_updated"] = datetime.now().isoformat()
print(f"💾 {immortal_name} 存储了 {memory_type} 记忆")
def retrieve_relevant_memories(self, immortal_name: str, query: str) -> List[Dict]:
"""检索相关记忆"""
if immortal_name not in self.memory_bank:
return []
# 简单的关键词匹配(实际应该使用向量相似度搜索)
relevant_memories = []
query_lower = query.lower()
for memory in self.memory_bank[immortal_name]["conversation_history"]:
if any(keyword in memory["content"].get("message", "").lower()
for keyword in query_lower.split()):
relevant_memories.append(memory)
return relevant_memories[-5:] # 返回最近5条相关记忆
async def generate_immortal_response(self, immortal_name: str, query: str) -> str:
"""生成仙人的回应,基于记忆和人格基线"""
# 检索相关记忆
relevant_memories = self.retrieve_relevant_memories(immortal_name, query)
# 构建上下文
context = self.build_context(immortal_name, relevant_memories)
# 生成回应
model = genai.GenerativeModel('gemini-2.0-flash-exp')
prompt = f"""
你是{immortal_name}{self.immortal_baselines[immortal_name]['personality_description']}
你的核心人格特质:
{json.dumps(self.immortal_baselines[immortal_name]['core_traits'], ensure_ascii=False, indent=2)}
你的相关记忆:
{json.dumps(relevant_memories, ensure_ascii=False, indent=2)}
请基于你的人格特质和记忆,回答以下问题:
{query}
要求:
1. 保持人格一致性
2. 参考历史记忆
3. 回答控制在100字以内
4. 体现你的独特风格
"""
response = await model.generate_content_async(prompt)
return response.text
def build_context(self, immortal_name: str, memories: List[Dict]) -> str:
"""构建上下文信息"""
context_parts = []
# 添加人格基线
baseline = self.immortal_baselines[immortal_name]
context_parts.append(f"人格类型: {baseline['mbti_type']}")
context_parts.append(f"核心特质: {json.dumps(baseline['core_traits'], ensure_ascii=False)}")
# 添加相关记忆
if memories:
context_parts.append("相关记忆:")
for memory in memories[-3:]: # 最近3条记忆
context_parts.append(f"- {memory['content'].get('message', '')}")
return "\n".join(context_parts)
def simulate_conversation(self, immortal_name: str, messages: List[str]):
"""模拟对话,测试记忆功能"""
print(f"\n🎭 开始与 {immortal_name} 的对话")
print("=" * 50)
for i, message in enumerate(messages):
print(f"\n用户: {message}")
# 生成回应
response = asyncio.run(self.generate_immortal_response(immortal_name, message))
print(f"{immortal_name}: {response}")
# 存储记忆
self.store_memory(immortal_name, "conversation", {
"user_message": message,
"immortal_response": response,
"session_id": f"session_{i}"
})
# 存储观点
if "看多" in response or "看空" in response or "观望" in response:
viewpoint = "看多" if "看多" in response else "看空" if "看空" in response else "观望"
self.store_memory(immortal_name, "viewpoint", {
"symbol": "TSLA", # 假设讨论特斯拉
"viewpoint": viewpoint,
"reasoning": response
})
def analyze_memory_evolution(self, immortal_name: str):
"""分析记忆演化"""
if immortal_name not in self.memory_bank:
print(f"{immortal_name} 没有记忆数据")
return
memory_data = self.memory_bank[immortal_name]
print(f"\n📊 {immortal_name} 记忆分析")
print("=" * 50)
print(f"记忆空间创建时间: {memory_data['created_at']}")
print(f"最后更新时间: {memory_data['last_updated']}")
print(f"对话记录数: {len(memory_data['conversation_history'])}")
print(f"观点演化数: {len(memory_data['viewpoint_evolution'])}")
print(f"决策记录数: {len(memory_data['decision_history'])}")
# 分析观点演化
if memory_data['viewpoint_evolution']:
print(f"\n观点演化轨迹:")
for i, viewpoint in enumerate(memory_data['viewpoint_evolution']):
print(f" {i+1}. {viewpoint['content']['viewpoint']} - {viewpoint['timestamp']}")
def save_memory_bank(self, filename: str = "memory_bank_backup.json"):
"""保存记忆库到文件"""
with open(filename, 'w', encoding='utf-8') as f:
json.dump(self.memory_bank, f, ensure_ascii=False, indent=2)
print(f"💾 记忆库已保存到 {filename}")
def load_memory_bank(self, filename: str = "memory_bank_backup.json"):
"""从文件加载记忆库"""
try:
with open(filename, 'r', encoding='utf-8') as f:
self.memory_bank = json.load(f)
print(f"📂 记忆库已从 {filename} 加载")
except FileNotFoundError:
print(f"⚠️ 文件 {filename} 不存在,使用空记忆库")
def main():
"""主实验函数"""
print("🚀 开始 Memory Bank 实验")
print("=" * 60)
# 创建实验实例
experiment = MemoryBankExperiment()
# 测试对话场景
test_scenarios = {
"吕洞宾": [
"你觉得特斯拉股票怎么样?",
"现在市场波动很大,你怎么看?",
"你之前不是看好特斯拉吗?现在还是这个观点吗?"
],
"何仙姑": [
"特斯拉股票风险大吗?",
"现在适合投资吗?",
"你一直很谨慎,现在还是建议观望吗?"
],
"张果老": [
"从历史数据看,特斯拉表现如何?",
"现在的估值合理吗?",
"你之前分析过特斯拉的历史数据,现在有什么新发现?"
]
}
# 执行实验
for immortal_name, messages in test_scenarios.items():
experiment.simulate_conversation(immortal_name, messages)
experiment.analyze_memory_evolution(immortal_name)
# 保存记忆库
experiment.save_memory_bank()
print("\n🎉 Memory Bank 实验完成!")
print("=" * 60)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,116 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Memory Bank 简化测试脚本
"""
import os
import asyncio
from datetime import datetime
import json
# Google GenAI 导入
import google.genai as genai
class MemoryBankTest:
"""Memory Bank 测试类"""
def __init__(self):
self.api_key = os.getenv('GOOGLE_API_KEY')
if not self.api_key:
raise ValueError("请设置 GOOGLE_API_KEY 环境变量")
self.client = genai.Client(api_key=self.api_key)
# 八仙人格基线
self.immortals = {
"吕洞宾": "剑仙投资顾问,主动进取,敢于冒险,技术分析专家",
"何仙姑": "慈悲风控专家,谨慎小心,保护意识强,风险厌恶",
"张果老": "历史数据分析师,深度思考,逆向思维,传统智慧"
}
# 记忆存储
self.memories = {}
def store_memory(self, immortal_name: str, message: str, response: str):
"""存储记忆"""
if immortal_name not in self.memories:
self.memories[immortal_name] = []
self.memories[immortal_name].append({
"message": message,
"response": response,
"timestamp": datetime.now().isoformat()
})
def chat_with_immortal(self, immortal_name: str, message: str) -> str:
"""与仙人对话"""
# 构建上下文
context = f"你是{immortal_name}{self.immortals[immortal_name]}"
# 添加记忆
if immortal_name in self.memories and self.memories[immortal_name]:
context += "\n\n你的历史对话:"
for memory in self.memories[immortal_name][-3:]: # 最近3条
context += f"\n用户: {memory['message']}\n你: {memory['response']}"
prompt = f"{context}\n\n现在用户说: {message}\n请回答100字以内:"
# 使用新的 API
response = self.client.models.generate_content(
model="gemini-2.0-flash-exp",
contents=[{"parts": [{"text": prompt}]}]
)
return response.candidates[0].content.parts[0].text
def test_memory_continuity(self):
"""测试记忆连续性"""
print("🧪 测试记忆连续性")
print("=" * 50)
# 测试吕洞宾
print("\n🎭 测试吕洞宾:")
messages = [
"你觉得特斯拉股票怎么样?",
"现在市场波动很大,你怎么看?",
"你之前不是看好特斯拉吗?现在还是这个观点吗?"
]
for message in messages:
print(f"\n用户: {message}")
response = self.chat_with_immortal("吕洞宾", message)
print(f"吕洞宾: {response}")
self.store_memory("吕洞宾", message, response)
# 测试何仙姑
print("\n🎭 测试何仙姑:")
messages = [
"特斯拉股票风险大吗?",
"现在适合投资吗?",
"你一直很谨慎,现在还是建议观望吗?"
]
for message in messages:
print(f"\n用户: {message}")
response = self.chat_with_immortal("何仙姑", message)
print(f"何仙姑: {response}")
self.store_memory("何仙姑", message, response)
def save_memories(self):
"""保存记忆"""
with open("memories.json", "w", encoding="utf-8") as f:
json.dump(self.memories, f, ensure_ascii=False, indent=2)
print("💾 记忆已保存到 memories.json")
def main():
"""主函数"""
print("🚀 Memory Bank 测试开始")
test = MemoryBankTest()
test.test_memory_continuity()
test.save_memories()
print("\n✅ 测试完成!")
if __name__ == "__main__":
main()