🏗️ 项目重构:模块化清理完成

This commit is contained in:
llama-research
2025-09-01 12:29:27 +00:00
parent ef7657101a
commit f9856c31e5
349 changed files with 41438 additions and 254 deletions

View File

@@ -0,0 +1,138 @@
// 查询术数书内容的脚本
// 通过 Hyperdrive API 查询 NeonDB 中的术数书数据
const API_BASE_URL = 'https://hyperdrive.seekkey.tech';
// 通用请求函数
async function apiRequest(endpoint, options = {}) {
const url = `${API_BASE_URL}${endpoint}`;
const headers = {
'Content-Type': 'application/json',
...options.headers
};
try {
const response = await fetch(url, {
...options,
headers
});
if (!response.ok) {
throw new Error(`HTTP ${response.status}: ${response.statusText}`);
}
const contentType = response.headers.get('content-type');
if (contentType && contentType.includes('application/json')) {
return await response.json();
} else {
return await response.text();
}
} catch (error) {
console.error(`Request failed for ${endpoint}:`, error.message);
throw error;
}
}
// 查询数据库表结构
async function queryTables() {
console.log('\n📋 查询数据库表结构...');
try {
const result = await apiRequest('/query-tables');
console.log('✅ 数据库表:', result);
return result;
} catch (error) {
console.log('❌ 查询表结构失败:', error.message);
return null;
}
}
// 查询术数书内容
async function queryShushuBook(limit = 10) {
console.log('\n📚 查询术数书内容...');
try {
const result = await apiRequest(`/query-shushu?limit=${limit}`);
console.log('✅ 术数书内容:', JSON.stringify(result, null, 2));
return result;
} catch (error) {
console.log('❌ 查询术数书失败:', error.message);
return null;
}
}
// 搜索术数书内容
async function searchShushuBook(keyword, limit = 5) {
console.log(`\n🔍 搜索术数书内容: "${keyword}"...`);
try {
const result = await apiRequest(`/search-shushu?q=${encodeURIComponent(keyword)}&limit=${limit}`);
console.log('✅ 搜索结果:', JSON.stringify(result, null, 2));
return result;
} catch (error) {
console.log('❌ 搜索失败:', error.message);
return null;
}
}
// 获取术数书统计信息
async function getShushuStats() {
console.log('\n📊 获取术数书统计信息...');
try {
const result = await apiRequest('/shushu-stats');
console.log('✅ 统计信息:', JSON.stringify(result, null, 2));
return result;
} catch (error) {
console.log('❌ 获取统计信息失败:', error.message);
return null;
}
}
// 主函数
async function main() {
console.log('🚀 术数书查询脚本');
console.log('==================');
// 首先测试连接
console.log('\n🔗 测试 Hyperdrive 连接...');
try {
const connectionTest = await apiRequest('/test-connection');
console.log('✅ 连接成功:', connectionTest.message);
} catch (error) {
console.log('❌ 连接失败:', error.message);
return;
}
// 查询表结构
await queryTables();
// 获取统计信息
await getShushuStats();
// 查询术数书内容
await queryShushuBook(5);
// 搜索示例
await searchShushuBook('易经');
await searchShushuBook('八卦');
await searchShushuBook('太公');
}
// 如果是 Node.js 环境,导入 fetch
if (typeof window === 'undefined') {
// Node.js 环境
const { default: fetch } = require('node-fetch');
global.fetch = fetch;
main().catch(console.error);
} else {
// 浏览器环境
console.log('在浏览器控制台中运行: main()');
}
// 导出函数供其他模块使用
if (typeof module !== 'undefined' && module.exports) {
module.exports = {
queryTables,
queryShushuBook,
searchShushuBook,
getShushuStats,
main
};
}

View File

@@ -0,0 +1,107 @@
// Simple configuration validation script
// This validates the wrangler.toml and Worker code without requiring API access
const fs = require('fs');
const path = require('path');
console.log('🔍 Validating Hyperdrive Configuration Files');
console.log('============================================');
// Check wrangler.toml
console.log('\n📋 Checking wrangler.toml...');
try {
const wranglerContent = fs.readFileSync('wrangler.toml', 'utf8');
console.log('✅ wrangler.toml exists');
// Check for required fields
const checks = [
{ field: 'name', regex: /name\s*=\s*["']([^"']+)["']/, required: true },
{ field: 'main', regex: /main\s*=\s*["']([^"']+)["']/, required: true },
{ field: 'compatibility_date', regex: /compatibility_date\s*=\s*["']([^"']+)["']/, required: true },
{ field: 'nodejs_compat', regex: /nodejs_compat/, required: true },
{ field: 'hyperdrive binding', regex: /binding\s*=\s*["']HYPERDRIVE["']/, required: true },
{ field: 'hyperdrive id', regex: /id\s*=\s*["']ef43924d89064cddabfaccf06aadfab6["']/, required: true }
];
checks.forEach(check => {
if (check.regex.test(wranglerContent)) {
console.log(`${check.field} configured`);
} else {
console.log(`${check.field} missing or incorrect`);
}
});
} catch (error) {
console.log('❌ wrangler.toml not found or unreadable');
}
// Check Worker code
console.log('\n📝 Checking Worker code...');
try {
const workerContent = fs.readFileSync('src/index.ts', 'utf8');
console.log('✅ src/index.ts exists');
const codeChecks = [
{ name: 'Hyperdrive binding usage', regex: /env\.HYPERDRIVE/ },
{ name: 'Test connection endpoint', regex: /\/test-connection/ },
{ name: 'Test query endpoint', regex: /\/test-query/ },
{ name: 'PostgreSQL import', regex: /pg/ },
{ name: 'Error handling', regex: /try\s*{[\s\S]*catch/ }
];
codeChecks.forEach(check => {
if (check.regex.test(workerContent)) {
console.log(`${check.name} implemented`);
} else {
console.log(` ⚠️ ${check.name} not found`);
}
});
} catch (error) {
console.log('❌ src/index.ts not found or unreadable');
}
// Check package.json
console.log('\n📦 Checking package.json...');
try {
const packageContent = fs.readFileSync('package.json', 'utf8');
const packageJson = JSON.parse(packageContent);
console.log('✅ package.json exists and is valid JSON');
const deps = {
'pg': packageJson.dependencies?.pg,
'@cloudflare/workers-types': packageJson.devDependencies?.['@cloudflare/workers-types'],
'@types/pg': packageJson.devDependencies?.['@types/pg'],
'typescript': packageJson.devDependencies?.typescript,
'wrangler': packageJson.devDependencies?.wrangler
};
Object.entries(deps).forEach(([dep, version]) => {
if (version) {
console.log(`${dep}: ${version}`);
} else {
console.log(`${dep}: not found`);
}
});
} catch (error) {
console.log('❌ package.json not found or invalid JSON');
}
console.log('\n📊 Configuration Summary:');
console.log(' - Project: hyperdrive-neondb-test');
console.log(' - Hyperdrive ID: ef43924d89064cddabfaccf06aadfab6');
console.log(' - Database: NeonDB (PostgreSQL)');
console.log(' - Binding: HYPERDRIVE');
console.log(' - Compatibility: nodejs_compat enabled');
console.log('\n🚀 Next Steps:');
console.log(' 1. Ensure you have proper Cloudflare API permissions');
console.log(' 2. Verify the Hyperdrive configuration exists in your Cloudflare dashboard');
console.log(' 3. Deploy with: wrangler deploy');
console.log(' 4. Test endpoints after deployment');
console.log('\n💡 Troubleshooting:');
console.log(' - If API token has insufficient permissions, use: wrangler login');
console.log(' - Check Hyperdrive exists: https://dash.cloudflare.com/[account-id]/workers/hyperdrive');
console.log(' - Verify NeonDB connection string is correct in Hyperdrive config');

View File

@@ -0,0 +1,16 @@
name = "hyperdrive-neondb-test"
main = "src/index.ts"
compatibility_date = "2025-02-04"
# Add nodejs_compat compatibility flag to support common database drivers
compatibility_flags = ["nodejs_compat"]
[observability]
enabled = true
# Hyperdrive configuration for NeonDB
[[hyperdrive]]
binding = "HYPERDRIVE"
id = "ef43924d89064cddabfaccf06aadfab6"
# For local development, use a local PostgreSQL connection
localConnectionString = "postgresql://postgres:password@localhost:5432/testdb"

View File

@@ -0,0 +1,150 @@
#!/usr/bin/env python3
"""
详细查看和测试Vertex AI Memory Bank功能
"""
import sys
import os
import asyncio
import json
from datetime import datetime
sys.path.append('src')
from jixia.memory.factory import get_memory_backend
from config.doppler_config import get_google_genai_config
async def test_memory_bank_functionality():
print("🧠 详细测试Memory Bank功能")
print("=" * 60)
# 获取配置
config = get_google_genai_config()
project_id = config.get('project_id')
location = config.get('location', 'us-central1')
print(f"📊 项目ID: {project_id}")
print(f"📍 位置: {location}")
print(f"🕐 测试时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print()
try:
# 获取Memory Bank后端
memory_backend = get_memory_backend()
print(f"✅ Memory Bank后端: {type(memory_backend).__name__}")
print()
# 选择一个智能体进行详细测试
test_agent = "lvdongbin"
print(f"🧙‍♂️ 测试智能体: {test_agent} (吕洞宾)")
print("-" * 40)
# 1. 创建/获取Memory Bank
print("1⃣ 创建Memory Bank...")
memory_bank_id = await memory_backend.create_memory_bank(
agent_name=test_agent,
display_name=f"测试Memory Bank - {test_agent}"
)
print(f" ✅ Memory Bank ID: {memory_bank_id}")
print()
# 2. 添加不同类型的记忆
print("2⃣ 添加测试记忆...")
# 添加对话记忆
conversation_memory = await memory_backend.add_memory(
agent_name=test_agent,
content="在关于AI伦理的辩论中我强调了技术发展应该以人为本不能忽视道德考量。",
memory_type="conversation",
debate_topic="AI伦理与技术发展",
metadata={"opponent": "铁拐李", "stance": "支持伦理优先"}
)
print(f" 📝 对话记忆: {conversation_memory}")
# 添加偏好记忆
preference_memory = await memory_backend.add_memory(
agent_name=test_agent,
content="我偏好使用古典哲学的智慧来论证现代问题,特别是道家思想。",
memory_type="preference",
metadata={"philosophy": "道家", "style": "古典智慧"}
)
print(f" ⚙️ 偏好记忆: {preference_memory}")
# 添加知识记忆
knowledge_memory = await memory_backend.add_memory(
agent_name=test_agent,
content="区块链技术的核心是去中心化和不可篡改性,这与道家'无为而治'的理念有相通之处。",
memory_type="knowledge",
debate_topic="区块链技术应用",
metadata={"domain": "技术", "connection": "哲学"}
)
print(f" 📚 知识记忆: {knowledge_memory}")
# 添加策略记忆
strategy_memory = await memory_backend.add_memory(
agent_name=test_agent,
content="在辩论中,当对手使用激进论点时,我会用温和的反问来引导思考,而不是直接对抗。",
memory_type="strategy",
metadata={"tactic": "温和引导", "effectiveness": ""}
)
print(f" 🎯 策略记忆: {strategy_memory}")
print()
# 3. 测试记忆搜索
print("3⃣ 测试记忆搜索...")
# 搜索关于AI的记忆
ai_memories = await memory_backend.search_memories(
agent_name=test_agent,
query="AI 人工智能 伦理",
limit=5
)
print(f" 🔍 搜索'AI 人工智能 伦理': 找到 {len(ai_memories)} 条记忆")
for i, memory in enumerate(ai_memories, 1):
print(f" {i}. {memory.get('content', '')[:50]}...")
print()
# 搜索策略相关记忆
strategy_memories = await memory_backend.search_memories(
agent_name=test_agent,
query="辩论 策略",
memory_type="strategy",
limit=3
)
print(f" 🎯 搜索策略记忆: 找到 {len(strategy_memories)} 条记忆")
for i, memory in enumerate(strategy_memories, 1):
print(f" {i}. {memory.get('content', '')[:50]}...")
print()
# 4. 获取智能体上下文
print("4⃣ 获取智能体上下文...")
context = await memory_backend.get_agent_context(
agent_name=test_agent,
debate_topic="AI伦理与技术发展"
)
print(f" 📋 上下文长度: {len(context)} 字符")
print(f" 📋 上下文预览: {context[:200]}...")
print()
# 5. 显示所有记忆类型的统计
print("5⃣ 记忆统计...")
memory_types = ["conversation", "preference", "knowledge", "strategy"]
for mem_type in memory_types:
memories = await memory_backend.search_memories(
agent_name=test_agent,
query="",
memory_type=mem_type,
limit=100
)
print(f" 📊 {mem_type}: {len(memories)} 条记忆")
print()
print("🎉 Memory Bank功能测试完成!")
print("=" * 60)
except Exception as e:
print(f"❌ 测试失败: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
asyncio.run(test_memory_bank_functionality())

View File

@@ -0,0 +1,83 @@
#!/usr/bin/env python3
"""
使用项目现有的Memory Bank代码来查看实例
"""
import sys
import os
import asyncio
sys.path.append('src')
from jixia.memory.factory import get_memory_backend
from config.doppler_config import get_google_genai_config
async def list_memory_banks():
"""使用项目的Memory Bank工厂来查看实例"""
print("🧠 使用项目Memory Bank工厂查看实例")
print("="*50)
try:
# 获取配置
config = get_google_genai_config()
print(f"📊 项目ID: {config.get('project_id')}")
print(f"📍 位置: {config.get('location')}")
print(f"🔑 Memory Bank启用: {config.get('memory_bank_enabled')}")
# 获取Memory Bank后端
print("\n🔍 正在获取Memory Bank后端...")
memory_backend = get_memory_backend()
print(f"✅ 成功获取Memory Bank后端: {type(memory_backend).__name__}")
# 八仙列表
immortals = [
"tieguaili", "zhongliquan", "lvdongbin", "hehe_erxian",
"lantsaihe", "hanxiangzi", "caoguo_jiu", "hexiangu"
]
print(f"\n🔍 正在检查八仙的Memory Bank实例...")
print("="*50)
for immortal in immortals:
try:
print(f"\n🧙‍♂️ {immortal}:")
# 尝试创建Memory Bank
memory_bank_id = await memory_backend.create_memory_bank(immortal)
print(f" ✅ Memory Bank ID: {memory_bank_id}")
# 尝试搜索一些记忆(如果有的话)
try:
memories = await memory_backend.search_memories(immortal, "投资", limit=3)
if memories:
print(f" 📝 找到 {len(memories)} 条记忆")
for i, memory in enumerate(memories[:2], 1):
content = memory.get('content', '无内容')[:50]
print(f" {i}. {content}...")
else:
print(f" 📭 暂无记忆")
except Exception as e:
print(f" ⚠️ 无法搜索记忆: {str(e)[:50]}...")
except Exception as e:
print(f" ❌ 错误: {str(e)[:50]}...")
print(f"\n🎉 Memory Bank检查完成!")
except Exception as e:
print(f"\n❌ 主要错误: {str(e)}")
print(f"🔧 错误类型: {type(e).__name__}")
# 显示一些调试信息
print("\n🔍 调试信息:")
print(f" Python路径: {sys.path[:3]}...")
print(f" 当前目录: {os.getcwd()}")
print(f" 环境变量:")
for key in ['GOOGLE_API_KEY', 'GOOGLE_CLOUD_PROJECT_ID', 'VERTEX_MEMORY_BANK_ENABLED']:
value = os.getenv(key, '未设置')
if 'API_KEY' in key and value != '未设置':
value = value[:10] + '...' if len(value) > 10 else value
print(f" {key}: {value}")
if __name__ == "__main__":
asyncio.run(list_memory_banks())

View File

@@ -0,0 +1,299 @@
#!/usr/bin/env python3
"""
Vertex AI Memory Bank Web界面
一个简单的Streamlit应用用于通过Web界面访问和管理Memory Bank
"""
import streamlit as st
import asyncio
import sys
import os
from datetime import datetime
# 添加项目路径
sys.path.append('/Users/ben/liurenchaxin/src')
try:
from jixia.memory.factory import get_memory_backend
except ImportError as e:
st.error(f"无法导入jixia模块: {e}")
st.info("请确保已激活虚拟环境并安装了所需依赖")
st.stop()
# 页面配置
st.set_page_config(
page_title="Memory Bank 管理界面",
page_icon="🧠",
layout="wide"
)
# 标题
st.title("🧠 Vertex AI Memory Bank 管理界面")
st.markdown("---")
# 侧边栏配置
st.sidebar.header("配置")
project_id = st.sidebar.text_input("项目ID", value="inner-radius-469712-e9")
location = st.sidebar.text_input("区域", value="us-central1")
# 八仙列表
EIGHT_IMMORTALS = [
"lvdongbin", "tieguaili", "hanxiangzi", "lanzaihe",
"hesengu", "zhonghanli", "caogujiu", "hanzhongli"
]
# 缓存Memory Bank后端
@st.cache_resource
def get_memory_backend_cached():
"""获取Memory Bank后端缓存"""
try:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
backend = loop.run_until_complete(get_memory_backend("vertex"))
return backend, loop
except Exception as e:
st.error(f"初始化Memory Bank失败: {e}")
return None, None
# 异步函数包装器
def run_async(coro):
"""运行异步函数"""
backend, loop = get_memory_backend_cached()
if backend is None:
return None
try:
return loop.run_until_complete(coro)
except Exception as e:
st.error(f"操作失败: {e}")
return None
# 主界面
tab1, tab2, tab3, tab4 = st.tabs(["📋 Memory Bank列表", "🔍 搜索记忆", " 添加记忆", "📊 统计信息"])
with tab1:
st.header("Memory Bank 实例列表")
if st.button("🔄 刷新列表", key="refresh_list"):
st.rerun()
# 显示八仙Memory Bank状态
cols = st.columns(4)
for i, immortal in enumerate(EIGHT_IMMORTALS):
with cols[i % 4]:
with st.container():
st.subheader(f"🧙‍♂️ {immortal}")
# 检查Memory Bank状态
backend, _ = get_memory_backend_cached()
if backend:
try:
# 尝试获取agent context来验证Memory Bank存在
context = run_async(backend.get_agent_context(immortal))
if context is not None:
st.success("✅ 活跃")
# 显示记忆数量
memories = run_async(backend.search_memories(immortal, "", limit=100))
if memories:
st.info(f"📝 记忆数量: {len(memories)}")
else:
st.info("📝 记忆数量: 0")
else:
st.warning("⚠️ 未初始化")
except Exception as e:
st.error(f"❌ 错误: {str(e)[:50]}...")
else:
st.error("❌ 连接失败")
with tab2:
st.header("🔍 搜索记忆")
col1, col2 = st.columns([1, 2])
with col1:
selected_agent = st.selectbox("选择Agent", EIGHT_IMMORTALS, key="search_agent")
search_query = st.text_input("搜索关键词", placeholder="输入要搜索的内容...", key="search_query")
search_limit = st.slider("结果数量", 1, 50, 10, key="search_limit")
if st.button("🔍 搜索", key="search_button"):
if search_query:
with st.spinner("搜索中..."):
backend, _ = get_memory_backend_cached()
if backend:
memories = run_async(backend.search_memories(selected_agent, search_query, limit=search_limit))
st.session_state['search_results'] = memories
st.session_state['search_agent'] = selected_agent
st.session_state['search_query'] = search_query
else:
st.warning("请输入搜索关键词")
with col2:
st.subheader("搜索结果")
if 'search_results' in st.session_state and st.session_state['search_results']:
st.success(f"找到 {len(st.session_state['search_results'])} 条记忆")
for i, memory in enumerate(st.session_state['search_results']):
with st.expander(f"记忆 {i+1}: {memory.get('content', 'N/A')[:50]}..."):
st.write(f"**内容**: {memory.get('content', 'N/A')}")
st.write(f"**类型**: {memory.get('memory_type', 'N/A')}")
st.write(f"**时间**: {memory.get('timestamp', 'N/A')}")
if 'metadata' in memory:
st.write(f"**元数据**: {memory['metadata']}")
elif 'search_results' in st.session_state:
st.info("未找到匹配的记忆")
else:
st.info("请执行搜索以查看结果")
with tab3:
st.header(" 添加记忆")
col1, col2 = st.columns([1, 1])
with col1:
add_agent = st.selectbox("选择Agent", EIGHT_IMMORTALS, key="add_agent")
memory_type = st.selectbox("记忆类型", ["conversation", "preference", "knowledge", "strategy"], key="memory_type")
memory_content = st.text_area("记忆内容", placeholder="输入要添加的记忆内容...", height=150, key="memory_content")
# 可选的元数据
st.subheader("元数据(可选)")
importance = st.slider("重要性", 1, 10, 5, key="importance")
tags = st.text_input("标签(用逗号分隔)", placeholder="标签1, 标签2, 标签3", key="tags")
if st.button(" 添加记忆", key="add_memory_button"):
if memory_content:
with st.spinner("添加记忆中..."):
backend, _ = get_memory_backend_cached()
if backend:
# 准备元数据
metadata = {
"importance": importance,
"timestamp": datetime.now().isoformat(),
"source": "web_interface"
}
if tags:
metadata["tags"] = [tag.strip() for tag in tags.split(",")]
# 添加记忆
success = run_async(backend.add_memory(
agent_id=add_agent,
content=memory_content,
memory_type=memory_type,
metadata=metadata
))
if success:
st.success("✅ 记忆添加成功!")
# 清空输入
st.session_state['memory_content'] = ""
st.session_state['tags'] = ""
else:
st.error("❌ 添加记忆失败")
else:
st.warning("请输入记忆内容")
with col2:
st.subheader("添加记忆预览")
if memory_content:
st.info(f"**Agent**: {add_agent}")
st.info(f"**类型**: {memory_type}")
st.info(f"**内容**: {memory_content}")
st.info(f"**重要性**: {importance}/10")
if tags:
st.info(f"**标签**: {tags}")
else:
st.info("输入记忆内容以查看预览")
with tab4:
st.header("📊 统计信息")
if st.button("🔄 刷新统计", key="refresh_stats"):
st.rerun()
# 获取统计信息
backend, _ = get_memory_backend_cached()
if backend:
stats_data = []
for immortal in EIGHT_IMMORTALS:
try:
# 获取记忆数量
memories = run_async(backend.search_memories(immortal, "", limit=1000))
memory_count = len(memories) if memories else 0
# 获取agent context
context = run_async(backend.get_agent_context(immortal))
status = "活跃" if context else "未初始化"
stats_data.append({
"Agent": immortal,
"状态": status,
"记忆数量": memory_count,
"最后更新": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
})
except Exception as e:
stats_data.append({
"Agent": immortal,
"状态": "错误",
"记忆数量": 0,
"最后更新": f"错误: {str(e)[:30]}..."
})
# 显示统计表格
st.dataframe(stats_data, use_container_width=True)
# 显示汇总信息
col1, col2, col3, col4 = st.columns(4)
total_agents = len(EIGHT_IMMORTALS)
active_agents = sum(1 for item in stats_data if item["状态"] == "活跃")
total_memories = sum(item["记忆数量"] for item in stats_data)
avg_memories = total_memories / total_agents if total_agents > 0 else 0
with col1:
st.metric("总Agent数", total_agents)
with col2:
st.metric("活跃Agent数", active_agents)
with col3:
st.metric("总记忆数", total_memories)
with col4:
st.metric("平均记忆数", f"{avg_memories:.1f}")
# 页脚
st.markdown("---")
st.markdown(
"""
<div style='text-align: center; color: #666;'>
🧠 Vertex AI Memory Bank Web界面 |
<a href='https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/memory-bank/overview' target='_blank'>官方文档</a>
</div>
""",
unsafe_allow_html=True
)
# 使用说明
with st.expander("📖 使用说明"):
st.markdown("""
### 功能说明
1. **Memory Bank列表**: 查看所有八仙角色的Memory Bank状态和记忆数量
2. **搜索记忆**: 在指定Agent的记忆中搜索特定内容
3. **添加记忆**: 为Agent添加新的记忆支持不同类型和元数据
4. **统计信息**: 查看所有Agent的统计数据和汇总信息
### 使用前准备
1. 确保已激活虚拟环境: `source venv/bin/activate`
2. 确保已设置Google Cloud认证: `gcloud auth application-default login`
3. 运行此界面: `streamlit run memory_bank_web_interface.py`
### 注意事项
- Memory Bank目前仅在us-central1区域可用
- 搜索功能支持模糊匹配
- 添加的记忆会立即生效
- 统计信息实时更新
""")

View File

@@ -0,0 +1,154 @@
#!/usr/bin/env python3
"""
通过Google Cloud Console查看Memory Bank资源
"""
import sys
import os
import asyncio
import json
import subprocess
from datetime import datetime
sys.path.append('src')
from config.doppler_config import get_google_genai_config
def get_access_token():
"""获取Google Cloud访问令牌"""
try:
result = subprocess.run(
['gcloud', 'auth', 'print-access-token'],
capture_output=True,
text=True,
check=True
)
return result.stdout.strip()
except subprocess.CalledProcessError as e:
print(f"❌ 获取访问令牌失败: {e}")
return None
def make_api_request(url, token):
"""发起API请求"""
import requests
headers = {
'Authorization': f'Bearer {token}',
'Content-Type': 'application/json'
}
try:
response = requests.get(url, headers=headers)
return response.status_code, response.json() if response.content else {}
except Exception as e:
return None, str(e)
def main():
print("🔍 通过GCP API查看Memory Bank资源")
print("=" * 60)
# 获取配置
config = get_google_genai_config()
project_id = config.get('project_id')
location = config.get('location', 'us-central1')
print(f"📊 项目ID: {project_id}")
print(f"📍 位置: {location}")
print(f"🕐 查询时间: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print()
# 获取访问令牌
print("🔑 获取访问令牌...")
token = get_access_token()
if not token:
print("❌ 无法获取访问令牌")
return
print(f"✅ 访问令牌: {token[:20]}...")
print()
# 尝试不同的API端点
api_endpoints = [
# Vertex AI API
f"https://aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/operations",
f"https://aiplatform.googleapis.com/v1beta1/projects/{project_id}/locations/{location}/operations",
# Generative Language API
f"https://generativelanguage.googleapis.com/v1beta/projects/{project_id}/locations/{location}/operations",
# 尝试Memory Bank相关端点
f"https://aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/memoryBanks",
f"https://aiplatform.googleapis.com/v1beta1/projects/{project_id}/locations/{location}/memoryBanks",
# 尝试其他可能的端点
f"https://generativelanguage.googleapis.com/v1beta/projects/{project_id}/locations/{location}/memoryBanks",
f"https://generativelanguage.googleapis.com/v1/projects/{project_id}/locations/{location}/memoryBanks",
]
print("🌐 测试API端点...")
print("-" * 40)
for i, endpoint in enumerate(api_endpoints, 1):
print(f"{i}. 测试: {endpoint.split('/')[-2]}/{endpoint.split('/')[-1]}")
status_code, response = make_api_request(endpoint, token)
if status_code == 200:
print(f" ✅ 成功 (200): 找到 {len(response.get('operations', response.get('memoryBanks', [])))} 个资源")
if response:
print(f" 📄 响应预览: {str(response)[:100]}...")
elif status_code == 404:
print(f" ⚠️ 未找到 (404): 端点不存在")
elif status_code == 403:
print(f" 🚫 权限不足 (403): 需要更多权限")
elif status_code:
print(f" ❌ 错误 ({status_code}): {str(response)[:50]}...")
else:
print(f" 💥 请求失败: {response}")
print()
# 查看项目信息
print("📋 项目信息...")
project_url = f"https://cloudresourcemanager.googleapis.com/v1/projects/{project_id}"
status_code, response = make_api_request(project_url, token)
if status_code == 200:
print(f" ✅ 项目名称: {response.get('name', 'N/A')}")
print(f" 📊 项目编号: {response.get('projectNumber', 'N/A')}")
print(f" 🏷️ 项目ID: {response.get('projectId', 'N/A')}")
print(f" 📅 创建时间: {response.get('createTime', 'N/A')}")
print(f" 🔄 生命周期: {response.get('lifecycleState', 'N/A')}")
else:
print(f" ❌ 无法获取项目信息: {status_code}")
print()
# 查看启用的服务
print("🔧 查看启用的AI相关服务...")
services_url = f"https://serviceusage.googleapis.com/v1/projects/{project_id}/services"
status_code, response = make_api_request(services_url, token)
if status_code == 200:
services = response.get('services', [])
ai_services = [s for s in services if 'ai' in s.get('config', {}).get('name', '').lower() or 'generative' in s.get('config', {}).get('name', '').lower()]
print(f" 📊 总服务数: {len(services)}")
print(f" 🤖 AI相关服务: {len(ai_services)}")
for service in ai_services[:10]: # 显示前10个
name = service.get('config', {}).get('name', 'Unknown')
state = service.get('state', 'Unknown')
print(f"{name}: {state}")
else:
print(f" ❌ 无法获取服务信息: {status_code}")
print()
print("🎯 Memory Bank访问建议:")
print(" 1. 在Google Cloud Console中访问:")
print(f" https://console.cloud.google.com/vertex-ai/generative/memory-banks?project={project_id}")
print(" 2. 或者访问Vertex AI主页:")
print(f" https://console.cloud.google.com/vertex-ai?project={project_id}")
print(" 3. Memory Bank功能可能在'生成式AI''实验性功能'部分")
print()
print("🎉 GCP API查询完成!")
print("=" * 60)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,112 @@
#!/usr/bin/env python3
"""
RapidAPI检查工具
从cauldron_new迁移的简化版本
"""
import requests
import time
from typing import Dict, List, Any
from config.settings import get_rapidapi_key
class RapidAPIChecker:
"""RapidAPI服务检查器"""
def __init__(self):
"""初始化检查器"""
try:
self.api_key = get_rapidapi_key()
except Exception as e:
print(f"❌ 无法获取RapidAPI密钥: {e}")
self.api_key = ""
self.headers = {
'X-RapidAPI-Key': self.api_key,
'Content-Type': 'application/json'
}
def test_api(self, host: str, endpoint: str, params: Dict = None, method: str = 'GET') -> Dict[str, Any]:
"""
测试特定的RapidAPI服务
Args:
host: API主机名
endpoint: API端点
params: 请求参数
method: HTTP方法
Returns:
测试结果
"""
self.headers['X-RapidAPI-Host'] = host
url = f"https://{host}{endpoint}"
try:
if method.upper() == 'GET':
response = requests.get(url, headers=self.headers, params=params, timeout=8)
else:
response = requests.post(url, headers=self.headers, json=params, timeout=8)
return {
'success': response.status_code == 200,
'status_code': response.status_code,
'response_size': len(response.text),
'response_time': response.elapsed.total_seconds(),
'error': None if response.status_code == 200 else response.text[:200]
}
except Exception as e:
return {
'success': False,
'status_code': None,
'response_size': 0,
'response_time': 0,
'error': str(e)
}
def check_common_apis(self) -> Dict[str, Dict[str, Any]]:
"""检查常用的RapidAPI服务"""
print("🔍 检查RapidAPI订阅状态")
# 常用API列表
apis_to_check = [
{
'name': 'Yahoo Finance',
'host': 'yahoo-finance15.p.rapidapi.com',
'endpoint': '/api/yahoo/qu/quote/AAPL'
},
{
'name': 'Alpha Vantage',
'host': 'alpha-vantage.p.rapidapi.com',
'endpoint': '/query?function=GLOBAL_QUOTE&symbol=AAPL'
},
{
'name': 'Seeking Alpha',
'host': 'seeking-alpha.p.rapidapi.com',
'endpoint': '/symbols/get-profile?symbols=AAPL'
}
]
results = {}
for api in apis_to_check:
print(f" 测试 {api['name']}...")
result = self.test_api(api['host'], api['endpoint'])
results[api['name']] = result
status = "✅ 可用" if result['success'] else "❌ 不可用"
print(f" {status} - {result.get('response_time', 0):.2f}s")
time.sleep(0.5) # 避免请求过快
return results
def main():
"""主函数"""
checker = RapidAPIChecker()
results = checker.check_common_apis()
print("\n📊 检查结果总结:")
available_count = sum(1 for result in results.values() if result['success'])
print(f"可用API: {available_count}/{len(results)}")
if __name__ == "__main__":
main()