liurenchaxin/engines/cycle_models.py

122 lines
5.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# cycle_models.py
from abc import ABC, abstractmethod
from typing import Dict, Any, List
class CycleModel(ABC):
"""
周期模型抽象基类 (Abstract Base Class)。
定义了所有市场周期、板块轮动或生命周期模型的统一接口。
确保上层应用如FSM可以调用周期分析功能而无需关心其具体实现
(例如,是十二长生、二十四节气还是美林投资时钟)。
"""
@abstractmethod
def get_current_stage(self, data: Dict[str, Any]) -> str:
"""
根据输入数据,判断当前处于哪个周期阶段。
:param data: 包含用于分析的数据的字典 (e.g., economic indicators, price momentum).
:return: 当前周期阶段的名称。
"""
pass
@abstractmethod
def get_stage_characteristics(self, stage: str) -> Dict[str, Any]:
"""
获取特定阶段的特征描述或建议策略。
:param stage: 阶段名称。
:return: 包含该阶段特征描述的字典。
"""
pass
@abstractmethod
def get_all_stages(self) -> List[str]:
"""
返回模型中所有阶段的有序列表。
:return: 包含所有阶段名称的列表。
"""
pass
class TwelveStagesOfLifeCycleModel(CycleModel):
"""
十二长生周期模型的具体实现。
该模型将事物的生命周期分为十二个阶段,用于描述板块轮动或个股的生命周期。
"""
def __init__(self):
self._stages = [
"长生", "沐浴", "冠带", "临官", "帝旺",
"", "", "", "", "", "", ""
]
self._characteristics = {
"长生": {"description": "新生,事物初生,潜力巨大。", "strategy": "关注,少量试探"},
"沐浴": {"description": "萌芽,成长初期,易受挫折。", "strategy": "谨慎观察,识别风险"},
"冠带": {"description": "成型,初步获得社会承认。", "strategy": "逐步建仓"},
"临官": {"description": "高速增长,事业有成。", "strategy": "持有并加仓"},
"帝旺": {"description": "顶峰,达到全盛时期。", "strategy": "警惕风险,考虑减仓"},
"": {"description": "衰退,开始走下坡路。", "strategy": "逐步卖出"},
"": {"description": "问题暴露,盈利能力减弱。", "strategy": "清仓"},
"": {"description": "明显下滑,失去活力。", "strategy": "避免接触"},
"": {"description": "估值塌陷,被市场遗忘。", "strategy": "观望,等待转机"},
"": {"description": "市场失忆,完全被忽视。", "strategy": "观望"},
"": {"description": "潜伏,新一轮周期的孕育。", "strategy": "研究,寻找新催化剂"},
"": {"description": "建仓期,主力资金开始布局。", "strategy": "少量布局,等待信号"}
}
def get_current_stage(self, data: Dict[str, Any]) -> str:
"""
模拟根据市场数据判断当前所处的“十二长生”阶段。
在真实实现中,这里会是一个复杂的量化模型。
"""
# 模拟逻辑:简单地根据一个随机分数来确定阶段
# score 范围 0-11
mock_score = data.get("mock_score", 0)
stage_index = int(mock_score) % len(self._stages)
return self._stages[stage_index]
def get_stage_characteristics(self, stage: str) -> Dict[str, Any]:
"""
获取指定“十二长生”阶段的特征和策略建议。
"""
return self._characteristics.get(stage, {"description": "未知阶段", "strategy": ""})
def get_all_stages(self) -> List[str]:
"""
返回所有十二长生阶段。
"""
return self._stages
# --- 示例:如何使用解耦的周期模型 ---
if __name__ == '__main__':
import random
# 上层应用如FSM依赖于抽象的 CycleModel
def analyze_market_cycle(model: CycleModel, market_data: Dict[str, Any]):
current_stage = model.get_current_stage(market_data)
characteristics = model.get_stage_characteristics(current_stage)
print(f"当前市场周期分析 (模型: {model.__class__.__name__}):")
print(f" - 所处阶段: 【{current_stage}")
print(f" - 阶段描述: {characteristics['description']}")
print(f" - 建议策略: {characteristics['strategy']}")
# 运行时,传入一个具体的周期模型实例
twelve_stages_model = TwelveStagesOfLifeCycleModel()
# 模拟不同的市场数据
for i in range(3):
# 在真实场景中,这里会是真实的经济或市场数据
simulated_market_data = {"mock_score": random.randint(0, 11)}
analyze_market_cycle(twelve_stages_model, simulated_market_data)
print("-" * 50)
# 如果未来要添加“美林投资时钟”模型,只需实现一个新的类,
# 上层应用 analyze_market_cycle 的代码完全不需要修改。
# class MerrillClockModel(CycleModel):
# ...
# merrill_model = MerrillClockModel()
# analyze_market_cycle(merrill_model, real_economic_data)