72 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			72 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
| #!/usr/bin/env python3
 | ||
| """
 | ||
| 测试 Vertex AI Memory Bank 功能
 | ||
| """
 | ||
| 
 | ||
| import asyncio
 | ||
| import sys
 | ||
| import os
 | ||
| 
 | ||
| # 添加项目根目录到Python路径
 | ||
| sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '.')))
 | ||
| 
 | ||
| from src.jixia.memory.factory import get_memory_backend
 | ||
| 
 | ||
| async def test_vertex_memory_bank():
 | ||
|     """测试 Vertex Memory Bank 功能"""
 | ||
|     print("🧪 Vertex AI Memory Bank 功能测试\n")
 | ||
|     
 | ||
|     try:
 | ||
|         # 获取 Vertex Memory Bank 后端
 | ||
|         print("🔍 正在获取 Vertex Memory Bank 后端...")
 | ||
|         memory_bank = get_memory_backend(prefer='vertex')
 | ||
|         print("✅ 成功获取 Vertex Memory Bank 后端\n")
 | ||
|         
 | ||
|         # 测试创建记忆银行
 | ||
|         print("🔍 正在为吕洞宾创建记忆银行...")
 | ||
|         bank_id = await memory_bank.create_memory_bank("lvdongbin", "吕洞宾的记忆银行")
 | ||
|         print(f"✅ 成功为吕洞宾创建记忆银行: {bank_id}\n")
 | ||
|         
 | ||
|         # 测试添加记忆
 | ||
|         print("🔍 正在为吕洞宾添加记忆...")
 | ||
|         memory_id = await memory_bank.add_memory(
 | ||
|             agent_name="lvdongbin",
 | ||
|             content="在讨论NVIDIA股票时,我倾向于使用DCF模型评估其内在价值,并关注其在AI领域的竞争优势。",
 | ||
|             memory_type="preference",
 | ||
|             debate_topic="NVIDIA投资分析",
 | ||
|             metadata={"confidence": "high"}
 | ||
|         )
 | ||
|         print(f"✅ 成功为吕洞宾添加记忆: {memory_id}\n")
 | ||
|         
 | ||
|         # 测试搜索记忆
 | ||
|         print("🔍 正在搜索吕洞宾关于NVIDIA的记忆...")
 | ||
|         results = await memory_bank.search_memories(
 | ||
|             agent_name="lvdongbin",
 | ||
|             query="NVIDIA",
 | ||
|             memory_type="preference"
 | ||
|         )
 | ||
|         print(f"✅ 搜索完成,找到 {len(results)} 条相关记忆\n")
 | ||
|         
 | ||
|         if results:
 | ||
|             print("🔍 搜索结果:")
 | ||
|             for i, result in enumerate(results, 1):
 | ||
|                 print(f"  {i}. {result['content']}")
 | ||
|                 print(f"     相关性评分: {result['relevance_score']:.4f}\n")
 | ||
|         
 | ||
|         # 测试获取上下文
 | ||
|         print("🔍 正在获取吕洞宾关于NVIDIA投资分析的上下文...")
 | ||
|         context = await memory_bank.get_agent_context("lvdongbin", "NVIDIA投资分析")
 | ||
|         print("✅ 成功获取上下文\n")
 | ||
|         print("🔍 上下文内容:")
 | ||
|         print(context)
 | ||
|         print("\n")
 | ||
|         
 | ||
|         print("🎉 Vertex AI Memory Bank 功能测试完成!")
 | ||
|         
 | ||
|     except Exception as e:
 | ||
|         print(f"❌ 测试过程中发生错误: {e}")
 | ||
|         import traceback
 | ||
|         traceback.print_exc()
 | ||
| 
 | ||
| if __name__ == "__main__":
 | ||
|     asyncio.run(test_vertex_memory_bank()) |