122 lines
5.2 KiB
Python
122 lines
5.2 KiB
Python
# cycle_models.py
|
||
|
||
from abc import ABC, abstractmethod
|
||
from typing import Dict, Any, List
|
||
|
||
class CycleModel(ABC):
|
||
"""
|
||
周期模型抽象基类 (Abstract Base Class)。
|
||
|
||
定义了所有市场周期、板块轮动或生命周期模型的统一接口。
|
||
确保上层应用(如FSM)可以调用周期分析功能,而无需关心其具体实现
|
||
(例如,是十二长生、二十四节气还是美林投资时钟)。
|
||
"""
|
||
|
||
@abstractmethod
|
||
def get_current_stage(self, data: Dict[str, Any]) -> str:
|
||
"""
|
||
根据输入数据,判断当前处于哪个周期阶段。
|
||
:param data: 包含用于分析的数据的字典 (e.g., economic indicators, price momentum).
|
||
:return: 当前周期阶段的名称。
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def get_stage_characteristics(self, stage: str) -> Dict[str, Any]:
|
||
"""
|
||
获取特定阶段的特征描述或建议策略。
|
||
:param stage: 阶段名称。
|
||
:return: 包含该阶段特征描述的字典。
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def get_all_stages(self) -> List[str]:
|
||
"""
|
||
返回模型中所有阶段的有序列表。
|
||
:return: 包含所有阶段名称的列表。
|
||
"""
|
||
pass
|
||
|
||
|
||
class TwelveStagesOfLifeCycleModel(CycleModel):
|
||
"""
|
||
十二长生周期模型的具体实现。
|
||
|
||
该模型将事物的生命周期分为十二个阶段,用于描述板块轮动或个股的生命周期。
|
||
"""
|
||
|
||
def __init__(self):
|
||
self._stages = [
|
||
"长生", "沐浴", "冠带", "临官", "帝旺",
|
||
"衰", "病", "死", "墓", "绝", "胎", "养"
|
||
]
|
||
self._characteristics = {
|
||
"长生": {"description": "新生,事物初生,潜力巨大。", "strategy": "关注,少量试探"},
|
||
"沐浴": {"description": "萌芽,成长初期,易受挫折。", "strategy": "谨慎观察,识别风险"},
|
||
"冠带": {"description": "成型,初步获得社会承认。", "strategy": "逐步建仓"},
|
||
"临官": {"description": "高速增长,事业有成。", "strategy": "持有并加仓"},
|
||
"帝旺": {"description": "顶峰,达到全盛时期。", "strategy": "警惕风险,考虑减仓"},
|
||
"衰": {"description": "衰退,开始走下坡路。", "strategy": "逐步卖出"},
|
||
"病": {"description": "问题暴露,盈利能力减弱。", "strategy": "清仓"},
|
||
"死": {"description": "明显下滑,失去活力。", "strategy": "避免接触"},
|
||
"墓": {"description": "估值塌陷,被市场遗忘。", "strategy": "观望,等待转机"},
|
||
"绝": {"description": "市场失忆,完全被忽视。", "strategy": "观望"},
|
||
"胎": {"description": "潜伏,新一轮周期的孕育。", "strategy": "研究,寻找新催化剂"},
|
||
"养": {"description": "建仓期,主力资金开始布局。", "strategy": "少量布局,等待信号"}
|
||
}
|
||
|
||
def get_current_stage(self, data: Dict[str, Any]) -> str:
|
||
"""
|
||
模拟根据市场数据判断当前所处的“十二长生”阶段。
|
||
在真实实现中,这里会是一个复杂的量化模型。
|
||
"""
|
||
# 模拟逻辑:简单地根据一个随机分数来确定阶段
|
||
# score 范围 0-11
|
||
mock_score = data.get("mock_score", 0)
|
||
stage_index = int(mock_score) % len(self._stages)
|
||
return self._stages[stage_index]
|
||
|
||
def get_stage_characteristics(self, stage: str) -> Dict[str, Any]:
|
||
"""
|
||
获取指定“十二长生”阶段的特征和策略建议。
|
||
"""
|
||
return self._characteristics.get(stage, {"description": "未知阶段", "strategy": "无"})
|
||
|
||
def get_all_stages(self) -> List[str]:
|
||
"""
|
||
返回所有十二长生阶段。
|
||
"""
|
||
return self._stages
|
||
|
||
# --- 示例:如何使用解耦的周期模型 ---
|
||
if __name__ == '__main__':
|
||
import random
|
||
|
||
# 上层应用(如FSM)依赖于抽象的 CycleModel
|
||
def analyze_market_cycle(model: CycleModel, market_data: Dict[str, Any]):
|
||
current_stage = model.get_current_stage(market_data)
|
||
characteristics = model.get_stage_characteristics(current_stage)
|
||
|
||
print(f"当前市场周期分析 (模型: {model.__class__.__name__}):")
|
||
print(f" - 所处阶段: 【{current_stage}】")
|
||
print(f" - 阶段描述: {characteristics['description']}")
|
||
print(f" - 建议策略: {characteristics['strategy']}")
|
||
|
||
# 运行时,传入一个具体的周期模型实例
|
||
twelve_stages_model = TwelveStagesOfLifeCycleModel()
|
||
|
||
# 模拟不同的市场数据
|
||
for i in range(3):
|
||
# 在真实场景中,这里会是真实的经济或市场数据
|
||
simulated_market_data = {"mock_score": random.randint(0, 11)}
|
||
analyze_market_cycle(twelve_stages_model, simulated_market_data)
|
||
print("-" * 50)
|
||
|
||
# 如果未来要添加“美林投资时钟”模型,只需实现一个新的类,
|
||
# 上层应用 analyze_market_cycle 的代码完全不需要修改。
|
||
# class MerrillClockModel(CycleModel):
|
||
# ...
|
||
# merrill_model = MerrillClockModel()
|
||
# analyze_market_cycle(merrill_model, real_economic_data)
|