146 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			146 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Python
		
	
	
	
| # monster_stock_scanner.py
 | ||
| 
 | ||
| import random
 | ||
| from typing import List, Dict, Any
 | ||
| 
 | ||
| class Dragon:
 | ||
|     """
 | ||
|     龙生九子,子子不同。
 | ||
|     定义所有龙子的基础接口。
 | ||
|     """
 | ||
|     def __init__(self, name: str, description: str):
 | ||
|         self.name = name
 | ||
|         self.description = description
 | ||
| 
 | ||
|     def analyze(self, context: Dict[str, Any]) -> Dict[str, Any]:
 | ||
|         """
 | ||
|         每条龙子根据自身的神通,对市场进行分析。
 | ||
|         :param context: 包含分析所需信息的字典。
 | ||
|         :return: 包含分析结果的字典。
 | ||
|         """
 | ||
|         raise NotImplementedError("每个龙子都必须实现自己的 analyze 方法。")
 | ||
| 
 | ||
| class Bixi(Dragon):
 | ||
|     """
 | ||
|     赑屃 (Bìxì),龙之长子,好负重,为“天时”。
 | ||
|     负责识别宏观层面的结构性压力。
 | ||
|     """
 | ||
|     def __init__(self):
 | ||
|         super().__init__("赑屃", "识别宏观结构性压力")
 | ||
| 
 | ||
|     def analyze(self, context: Dict[str, Any]) -> Dict[str, Any]:
 | ||
|         """
 | ||
|         模拟分析宏观经济指标,以判断是否存在结构性压力。
 | ||
|         在真实实现中,这里会调用经济数据API(如FRED, World Bank)。
 | ||
|         """
 | ||
|         print(f"【天时 - {self.name}】正在分析宏观经济大盘...")
 | ||
| 
 | ||
|         # 模拟宏观指标
 | ||
|         mock_interest_rate = random.uniform(0.01, 0.05)
 | ||
|         mock_inflation_rate = random.uniform(0.01, 0.03)
 | ||
|         mock_gdp_growth = random.uniform(-0.01, 0.02)
 | ||
| 
 | ||
|         # 规则:当利率和通胀较高,且GDP增长乏力时,认为存在结构性压力。
 | ||
|         pressure_score = (mock_interest_rate + mock_inflation_rate) - mock_gdp_growth
 | ||
|         
 | ||
|         is_pressure = pressure_score > 0.05
 | ||
|         
 | ||
|         print(f"分析完成:利率={mock_interest_rate:.2%}, 通胀={mock_inflation_rate:.2%}, GDP增长={mock_gdp_growth:.2%}")
 | ||
|         print(f"宏观压力分数: {pressure_score:.3f}. {'存在结构性压力' if is_pressure else '宏观环境稳定'}")
 | ||
| 
 | ||
|         return {
 | ||
|             "has_structural_pressure": is_pressure,
 | ||
|             "macro_pressure_score": pressure_score
 | ||
|         }
 | ||
| 
 | ||
| class Fuxi(Dragon):
 | ||
|     """
 | ||
|     负屃 (Fùxì),龙之八子,好斯文,为“地利”。
 | ||
|     负责计算个股受到的多主题挤压分数。
 | ||
|     """
 | ||
|     def __init__(self):
 | ||
|         super().__init__("负屃", "计算个股的多主题挤压分数")
 | ||
| 
 | ||
|     def analyze(self, context: Dict[str, Any]) -> Dict[str, Any]:
 | ||
|         """
 | ||
|         模拟分析个股,判断其是否受到多个热门主题的共同驱动。
 | ||
|         在真实实现中,这里会使用NLP分析新闻、研报,并结合知识图谱。
 | ||
|         """
 | ||
|         stock_symbol = context.get("stock_symbol")
 | ||
|         if not stock_symbol:
 | ||
|             raise ValueError("需要提供股票代码 (stock_symbol) 进行分析。")
 | ||
| 
 | ||
|         print(f"\n【地利 - {self.name}】正在分析个股 '{stock_symbol}' 的主题挤压...")
 | ||
| 
 | ||
|         # 模拟热门主题
 | ||
|         hot_themes = ["AI芯片", "新能源汽车", "量子计算", "生物医药", "数字孪生"]
 | ||
|         
 | ||
|         # 模拟个股关联的主题
 | ||
|         stock_related_themes = random.sample(hot_themes, random.randint(1, 3))
 | ||
|         
 | ||
|         # 规则:关联的主题越多,挤压分数越高。
 | ||
|         squeeze_score = len(stock_related_themes) / len(hot_themes)
 | ||
| 
 | ||
|         print(f"分析完成:'{stock_symbol}' 关联的主题: {stock_related_themes}")
 | ||
|         print(f"多主题挤压分数: {squeeze_score:.2f}")
 | ||
| 
 | ||
|         return {
 | ||
|             "related_themes": stock_related_themes,
 | ||
|             "theme_squeeze_score": squeeze_score
 | ||
|         }
 | ||
| 
 | ||
| def monster_stock_scanner(stock_symbol: str):
 | ||
|     """
 | ||
|     “妖股扫描器” - 双龙合璧策略。
 | ||
| 
 | ||
|     结合“天时”(宏观压力)与“地利”(个股主题),寻找潜在的“妖股”。
 | ||
|     “妖股”的定义:在宏观承压的环境下,依然受到多个强大主题驱动的个股。
 | ||
|     这种股票可能因为其强大的叙事性而走出独立行情。
 | ||
|     """
 | ||
|     print(f"--- 启动妖股扫描器,目标: {stock_symbol} ---")
 | ||
| 
 | ||
|     # 初始化龙子
 | ||
|     bixi = Bixi()
 | ||
|     fuxi = Fuxi()
 | ||
| 
 | ||
|     # 1. 分析天时
 | ||
|     macro_context = {}
 | ||
|     macro_analysis = bixi.analyze(macro_context)
 | ||
| 
 | ||
|     # 2. 分析地利
 | ||
|     stock_context = {"stock_symbol": stock_symbol}
 | ||
|     stock_analysis = fuxi.analyze(stock_context)
 | ||
| 
 | ||
|     # 3. 监听“人和”(催化剂)- 此处简化
 | ||
|     # 在真实系统中,嘲风(Chaofeng)会监听实时新闻、社交媒体等。
 | ||
|     has_catalyst = random.choice([True, False])
 | ||
|     print(f"\n【人和 - 嘲风】监听中... {'发现关键催化剂!' if has_catalyst else '未发现明显催化剂。'}")
 | ||
| 
 | ||
|     # 4. 综合决策
 | ||
|     is_monster_stock = (
 | ||
|         macro_analysis["has_structural_pressure"] and
 | ||
|         stock_analysis["theme_squeeze_score"] >= 0.5 and
 | ||
|         has_catalyst
 | ||
|     )
 | ||
| 
 | ||
|     print("\n--- 扫描结论 ---")
 | ||
|     if is_monster_stock:
 | ||
|         print(f"✅ 结论: '{stock_symbol}' 具备妖股潜力!")
 | ||
|         print("   - 天时: 宏观环境承压,资金寻求确定性。")
 | ||
|         print(f"   - 地利: 受到 {len(stock_analysis['related_themes'])} 个热门主题的强力驱动。")
 | ||
|         print("   - 人和: 出现关键催化剂。")
 | ||
|     else:
 | ||
|         print(f"❌ 结论: '{stock_symbol}' 当前不符合妖股特征。")
 | ||
|         if not macro_analysis["has_structural_pressure"]:
 | ||
|             print("   - 原因: 宏观环境稳定,市场风险偏好较高,难以形成抱团。")
 | ||
|         if stock_analysis["theme_squeeze_score"] < 0.5:
 | ||
|             print("   - 原因: 个股主题驱动力不足,缺乏想象空间。")
 | ||
|         if not has_catalyst:
 | ||
|             print("   - 原因: 缺少引爆市场的催化剂。")
 | ||
| 
 | ||
| if __name__ == '__main__':
 | ||
|     # 扫描一个示例股票
 | ||
|     monster_stock_scanner("TSLA")
 | ||
|     print("\n" + "="*50 + "\n")
 | ||
|     monster_stock_scanner("GOOGL")
 |