feat: 添加MCP服务器测试套件和Kali Linux测试支持
refactor(consul): 将Consul集群作业文件移动到components目录 refactor(vault): 将Vault集群作业文件移动到components目录 refactor(nomad): 将Nomad NFS卷作业文件移动到components目录 fix(ssh): 修复浏览器主机的SSH密钥认证配置 fix(ansible): 更新Ansible配置以支持SSH密钥认证 test: 添加全面的MCP服务器测试脚本和报告 test: 添加Kali Linux测试套件和健康检查 test: 添加自动化测试运行脚本 docs: 更新README以包含测试说明和经验教训 docs: 添加Vault部署指南和测试文档 chore: 更新Makefile添加测试相关命令
This commit is contained in:
88
tests/README.md
Normal file
88
tests/README.md
Normal file
@@ -0,0 +1,88 @@
|
||||
# 测试脚本目录
|
||||
|
||||
本目录包含了项目的所有测试脚本,按照功能进行了分类组织。
|
||||
|
||||
## 目录结构
|
||||
|
||||
```
|
||||
tests/
|
||||
├── mcp_servers/ # MCP服务器相关测试脚本
|
||||
│ ├── test_direct_search.sh
|
||||
│ ├── test_local_mcp_servers.sh
|
||||
│ ├── test_mcp_interface.sh
|
||||
│ ├── test_mcp_servers.sh
|
||||
│ ├── test_mcp_servers_comprehensive.py
|
||||
│ ├── test_mcp_servers_improved.py
|
||||
│ ├── test_mcp_servers_simple.py
|
||||
│ ├── test_qdrant_ollama_server.py
|
||||
│ ├── test_qdrant_ollama_tools.sh
|
||||
│ ├── test_qdrant_ollama_tools_fixed.sh
|
||||
│ ├── test_search_documents.sh
|
||||
│ └── test_mcp_search_final.sh
|
||||
├── mcp_server_test_report.md # MCP服务器测试报告
|
||||
├── run_all_tests.sh # 自动化测试运行器
|
||||
└── legacy/ # 旧的或不再使用的测试脚本
|
||||
```
|
||||
|
||||
## MCP服务器测试脚本说明
|
||||
|
||||
### Shell脚本
|
||||
- `test_direct_search.sh`: 测试search_documents方法,通过SSH执行Python代码
|
||||
- `test_local_mcp_servers.sh`: 检查MCP配置,测试服务器可用性(context7, qdrant, qdrant-ollama),验证环境变量
|
||||
- `test_mcp_interface.sh`: 通过实际接口测试MCP服务器调用,包括tools/list和qdrant_search方法
|
||||
- `test_mcp_servers.sh`: 通过initialize方法调用测试Qdrant和Qdrant-Ollama MCP服务器
|
||||
- `test_search_documents.sh`: 添加测试文档并搜索"人工智能"(artificial intelligence)
|
||||
- `test_qdrant_ollama_tools.sh`: 通过JSON-RPC调用测试search_documents和add_document工具
|
||||
- `test_qdrant_ollama_tools_fixed.sh`: 测试search_documents、add_document和list_collections工具
|
||||
- `test_mcp_search_final.sh`: 最终版本的MCP搜索测试脚本
|
||||
|
||||
### Python脚本
|
||||
- `test_qdrant_ollama_server.py`: 启动服务器,测试初始化、工具列表、文档添加和搜索功能
|
||||
- `test_mcp_servers_comprehensive.py`: 使用asyncio和增强响应处理综合测试MCP服务器
|
||||
- `test_mcp_servers_improved.py`: 改进版的MCP服务器测试,使用asyncio和增强响应处理
|
||||
- `test_mcp_servers_simple.py`: 简化版MCP服务器测试,使用同步子进程调用
|
||||
|
||||
## 使用方法
|
||||
|
||||
### 运行单个测试脚本
|
||||
```bash
|
||||
cd tests/mcp_servers
|
||||
./test_local_mcp_servers.sh
|
||||
```
|
||||
|
||||
或运行Python测试:
|
||||
```bash
|
||||
cd tests/mcp_servers
|
||||
python test_mcp_servers_simple.py
|
||||
```
|
||||
|
||||
### 批量运行所有测试
|
||||
使用自动化测试运行器脚本,可以一键运行所有测试并生成详细报告:
|
||||
```bash
|
||||
cd tests
|
||||
./run_all_tests.sh
|
||||
```
|
||||
|
||||
自动化测试运行器将:
|
||||
- 自动运行所有Shell和Python测试脚本
|
||||
- 彩色输出测试进度和结果
|
||||
- 生成详细的测试报告(Markdown格式)
|
||||
- 统计测试通过率和失败情况
|
||||
- 保存测试日志到文件
|
||||
|
||||
## 注意事项
|
||||
|
||||
- 所有测试脚本都依赖于正确的环境变量配置
|
||||
- 测试前请确保相关服务(context7, qdrant, qdrant-ollama)已启动
|
||||
- 某些测试可能需要SSH访问权限
|
||||
|
||||
## 测试报告
|
||||
|
||||
`mcp_server_test_report.md` 文件包含了MCP服务器的详细测试结果,包括:
|
||||
- context7、qdrant和qdrant-ollama三个服务器的测试状态
|
||||
- 测试环境和方法说明
|
||||
- 发现的问题和解决方案
|
||||
- 环境变量配置详情
|
||||
- 建议和后续改进方向
|
||||
|
||||
建议在运行测试脚本前先阅读测试报告,了解当前的测试状态和已知问题。
|
||||
55
tests/mcp_server_test_report.md
Normal file
55
tests/mcp_server_test_report.md
Normal file
@@ -0,0 +1,55 @@
|
||||
# MCP服务器测试报告
|
||||
|
||||
## 测试概述
|
||||
本报告记录了对context7、qdrant和qdrant-ollama三个MCP服务器的测试结果。
|
||||
|
||||
## 测试环境
|
||||
- 测试时间:2025-06-17
|
||||
- 测试方法:通过SSH连接到远程服务器进行测试
|
||||
- 测试工具:JSON-RPC协议直接调用MCP服务器
|
||||
|
||||
## 测试结果
|
||||
|
||||
### 1. context7服务器
|
||||
- **状态**:✅ 正常工作
|
||||
- **测试内容**:
|
||||
- 成功初始化
|
||||
- 成功获取工具列表
|
||||
- 成功执行搜索功能
|
||||
- **备注**:context7服务器运行稳定,所有功能正常
|
||||
|
||||
### 2. qdrant-ollama服务器
|
||||
- **状态**:✅ 正常工作(已修复filter参数问题)
|
||||
- **测试内容**:
|
||||
- 成功获取工具列表:add_document、search_documents、list_collections和get_collection_info
|
||||
- 成功使用add_document工具添加文档
|
||||
- 成功使用search_documents工具搜索文档
|
||||
- **修复记录**:
|
||||
- **问题**:search_documents工具使用filter参数时出现"Unknown arguments: ['filter']"错误
|
||||
- **原因**:参数名称不匹配,工具定义中使用filter,但实现中使用query_filter
|
||||
- **解决方案**:将工具定义中的filter参数名改为query_filter
|
||||
- **验证结果**:修复后search_documents工具正常工作,不再出现错误
|
||||
|
||||
### 3. qdrant服务器
|
||||
- **状态**:✅ 正常工作
|
||||
- **测试内容**:
|
||||
- 成功获取工具列表:qdrant_search、qdrant_add和qdrant_delete
|
||||
- 成功使用qdrant_add工具添加文档
|
||||
- 成功使用qdrant_search工具搜索文档
|
||||
- **备注**:qdrant服务器运行稳定,所有功能正常
|
||||
|
||||
## 环境变量配置
|
||||
两个服务器都正确配置了以下环境变量:
|
||||
- QDRANT_URL: http://dev1:6333 (qdrant-ollama) / http://localhost:6333 (qdrant)
|
||||
- QDRANT_API_KEY: 313131
|
||||
- OLLAMA_URL: http://dev1:11434 (仅qdrant-ollama)
|
||||
- OLLAMA_MODEL: nomic-embed-text (仅qdrant-ollama)
|
||||
- COLLECTION_NAME: ollama_mcp (qdrant-ollama) / mcp (qdrant)
|
||||
|
||||
## 结论
|
||||
所有三个MCP服务器均已成功测试并正常工作。qdrant-ollama服务器的filter参数问题已修复,不再出现"Unknown arguments: ['filter']"错误。所有服务器的核心功能(添加文档、搜索文档)均正常运行。
|
||||
|
||||
## 建议
|
||||
1. 考虑将qdrant_mcp_server.py中的search方法更新为query_points方法,以消除弃用警告
|
||||
2. 可以考虑为qdrant-ollama服务器添加更多过滤选项,增强搜索功能
|
||||
3. 建议定期测试MCP服务器的功能,确保持续稳定运行
|
||||
32
tests/mcp_servers/test_direct_search.sh
Executable file
32
tests/mcp_servers/test_direct_search.sh
Executable file
@@ -0,0 +1,32 @@
|
||||
#!/bin/bash
|
||||
|
||||
echo "直接测试search_documents方法..."
|
||||
|
||||
# 创建一个简单的Python脚本来测试search_documents方法
|
||||
ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && python3 -c \"
|
||||
import asyncio
|
||||
import json
|
||||
import sys
|
||||
sys.path.append('/home/ben/qdrant')
|
||||
|
||||
from qdrant_ollama_mcp_server import QdrantOllamaMCPServer
|
||||
|
||||
async def test_search():
|
||||
server = QdrantOllamaMCPServer()
|
||||
|
||||
# 测试search_documents方法
|
||||
params = {
|
||||
'query': '人工智能',
|
||||
'limit': 3
|
||||
}
|
||||
|
||||
try:
|
||||
result = await server._search_documents(params)
|
||||
print('搜索结果:', json.dumps(result, indent=2, ensure_ascii=False))
|
||||
except Exception as e:
|
||||
print('搜索错误:', str(e))
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
asyncio.run(test_search())
|
||||
\""
|
||||
61
tests/mcp_servers/test_local_mcp_servers.sh
Executable file
61
tests/mcp_servers/test_local_mcp_servers.sh
Executable file
@@ -0,0 +1,61 @@
|
||||
#!/bin/bash
|
||||
|
||||
# 测试当前环境中的MCP服务器
|
||||
|
||||
echo "测试当前环境中的MCP服务器..."
|
||||
|
||||
# 检查当前环境中是否有MCP配置
|
||||
echo "检查MCP配置..."
|
||||
if [ -f "/root/.mcp/mcp_settings.json" ]; then
|
||||
echo "找到MCP配置文件: /root/.mcp/mcp_settings.json"
|
||||
cat /root/.mcp/mcp_settings.json
|
||||
else
|
||||
echo "未找到MCP配置文件: /root/.mcp/mcp_settings.json"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "检查.kilocode/mcp.json..."
|
||||
if [ -f "/root/mgmt/.kilocode/mcp.json" ]; then
|
||||
echo "找到MCP配置文件: /root/mgmt/.kilocode/mcp.json"
|
||||
cat /root/mgmt/.kilocode/mcp.json
|
||||
else
|
||||
echo "未找到MCP配置文件: /root/mgmt/.kilocode/mcp.json"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "检查是否有可用的MCP服务器..."
|
||||
|
||||
# 检查context7服务器
|
||||
echo "测试context7服务器..."
|
||||
echo '{"jsonrpc":"2.0","id":1,"method":"tools/list"}' | nc localhost 8080 2>/dev/null || echo "context7服务器未在本地运行"
|
||||
|
||||
# 检查qdrant服务器
|
||||
echo "测试qdrant服务器..."
|
||||
if [ -f "/root/mgmt/qdrant_mcp_server.py" ]; then
|
||||
echo "找到qdrant服务器脚本: /root/mgmt/qdrant_mcp_server.py"
|
||||
# 尝试直接运行服务器并测试
|
||||
echo '{"jsonrpc":"2.0","id":1,"method":"tools/list"}' | python3 /root/mgmt/qdrant_mcp_server.py 2>/dev/null || echo "qdrant服务器无法直接运行"
|
||||
else
|
||||
echo "未找到qdrant服务器脚本"
|
||||
fi
|
||||
|
||||
# 检查qdrant-ollama服务器
|
||||
echo "测试qdrant-ollama服务器..."
|
||||
if [ -f "/root/mgmt/qdrant_ollama_mcp_server.py" ]; then
|
||||
echo "找到qdrant-ollama服务器脚本: /root/mgmt/qdrant_ollama_mcp_server.py"
|
||||
# 尝试直接运行服务器并测试
|
||||
echo '{"jsonrpc":"2.0","id":1,"method":"tools/list"}' | python3 /root/mgmt/qdrant_ollama_mcp_server.py 2>/dev/null || echo "qdrant-ollama服务器无法直接运行"
|
||||
else
|
||||
echo "未找到qdrant-ollama服务器脚本"
|
||||
fi
|
||||
|
||||
echo ""
|
||||
echo "检查环境变量..."
|
||||
echo "QDRANT_URL: ${QDRANT_URL:-未设置}"
|
||||
echo "QDRANT_API_KEY: ${QDRANT_API_KEY:-未设置}"
|
||||
echo "OLLAMA_URL: ${OLLAMA_URL:-未设置}"
|
||||
echo "OLLAMA_MODEL: ${OLLAMA_MODEL:-未设置}"
|
||||
echo "COLLECTION_NAME: ${COLLECTION_NAME:-未设置}"
|
||||
|
||||
echo ""
|
||||
echo "测试完成。"
|
||||
21
tests/mcp_servers/test_mcp_interface.sh
Executable file
21
tests/mcp_servers/test_mcp_interface.sh
Executable file
@@ -0,0 +1,21 @@
|
||||
#!/bin/bash
|
||||
|
||||
# 测试MCP服务器在实际MCP接口中的调用
|
||||
|
||||
echo "测试Qdrant MCP服务器..."
|
||||
echo '{"jsonrpc":"2.0","id":1,"method":"tools/list"}' | ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && python qdrant_mcp_server.py"
|
||||
|
||||
echo ""
|
||||
echo "测试Qdrant-Ollama MCP服务器..."
|
||||
echo '{"jsonrpc":"2.0","id":1,"method":"tools/list"}' | ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && ./start_mcp_server.sh"
|
||||
|
||||
echo ""
|
||||
echo "测试Qdrant MCP服务器的搜索功能..."
|
||||
echo '{"jsonrpc":"2.0","id":1,"method":"tools/call","params":{"name":"qdrant_search","arguments":{"query":"测试查询","limit":3}}}' | ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && python qdrant_mcp_server.py"
|
||||
|
||||
echo ""
|
||||
echo "测试Qdrant-Ollama MCP服务器的搜索功能..."
|
||||
echo '{"jsonrpc":"2.0","id":1,"method":"tools/call","params":{"name":"qdrant_search","arguments":{"query":"测试查询","limit":3}}}' | ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && ./start_mcp_server.sh"
|
||||
|
||||
echo ""
|
||||
echo "测试完成。"
|
||||
15
tests/mcp_servers/test_mcp_search_final.sh
Executable file
15
tests/mcp_servers/test_mcp_search_final.sh
Executable file
@@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
echo "测试通过MCP接口调用search_documents工具..."
|
||||
|
||||
# 先添加一个文档
|
||||
echo "添加测试文档..."
|
||||
ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && echo '{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"tools/call\",\"params\":{\"name\":\"add_document\",\"arguments\":{\"text\":\"机器学习是人工智能的一个子领域,专注于开发能够从数据中学习的算法。\",\"metadata\":{\"source\":\"test\",\"topic\":\"ML\"}}}}' | ./start_mcp_server.sh"
|
||||
|
||||
echo ""
|
||||
echo "通过MCP接口搜索文档..."
|
||||
# 测试search_documents工具(不带filter参数)
|
||||
ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && echo '{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"tools/call\",\"params\":{\"name\":\"search_documents\",\"arguments\":{\"query\":\"机器学习\",\"limit\":3}}}' | ./start_mcp_server.sh"
|
||||
|
||||
echo ""
|
||||
echo "测试完成。"
|
||||
13
tests/mcp_servers/test_mcp_servers.sh
Executable file
13
tests/mcp_servers/test_mcp_servers.sh
Executable file
@@ -0,0 +1,13 @@
|
||||
#!/bin/bash
|
||||
|
||||
# 测试MCP服务器脚本
|
||||
|
||||
echo "测试Qdrant MCP服务器..."
|
||||
echo '{"jsonrpc":"2.0","id":1,"method":"initialize"}' | ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && python qdrant_mcp_server.py"
|
||||
|
||||
echo ""
|
||||
echo "测试Qdrant-Ollama MCP服务器..."
|
||||
echo '{"jsonrpc":"2.0","id":1,"method":"initialize"}' | ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && ./start_mcp_server.sh"
|
||||
|
||||
echo ""
|
||||
echo "测试完成。"
|
||||
158
tests/mcp_servers/test_mcp_servers_comprehensive.py
Normal file
158
tests/mcp_servers/test_mcp_servers_comprehensive.py
Normal file
@@ -0,0 +1,158 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
测试MCP服务器的脚本
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import subprocess
|
||||
import sys
|
||||
from typing import Dict, Any, List
|
||||
|
||||
async def test_mcp_server(server_name: str, command: List[str], env: Dict[str, str] = None):
|
||||
"""测试MCP服务器"""
|
||||
print(f"\n=== 测试 {server_name} 服务器 ===")
|
||||
|
||||
# 设置环境变量
|
||||
process_env = {}
|
||||
if env:
|
||||
process_env.update(env)
|
||||
|
||||
try:
|
||||
# 启动服务器进程
|
||||
process = await asyncio.create_subprocess_exec(
|
||||
*command,
|
||||
stdin=asyncio.subprocess.PIPE,
|
||||
stdout=asyncio.subprocess.PIPE,
|
||||
stderr=asyncio.subprocess.PIPE,
|
||||
env=process_env
|
||||
)
|
||||
|
||||
# 初始化请求
|
||||
init_request = {
|
||||
"jsonrpc": "2.0",
|
||||
"id": 1,
|
||||
"method": "initialize",
|
||||
"params": {
|
||||
"protocolVersion": "2024-11-05",
|
||||
"capabilities": {
|
||||
"tools": {}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# 发送初始化请求
|
||||
process.stdin.write((json.dumps(init_request) + "\n").encode())
|
||||
await process.stdin.drain()
|
||||
|
||||
# 读取初始化响应
|
||||
init_response = await process.stdout.readline()
|
||||
if init_response:
|
||||
try:
|
||||
init_data = json.loads(init_response.decode())
|
||||
print(f"初始化响应: {init_data}")
|
||||
except json.JSONDecodeError:
|
||||
print(f"初始化响应解析失败: {init_response}")
|
||||
|
||||
# 获取工具列表
|
||||
tools_request = {
|
||||
"jsonrpc": "2.0",
|
||||
"id": 2,
|
||||
"method": "tools/list"
|
||||
}
|
||||
|
||||
# 发送工具列表请求
|
||||
process.stdin.write((json.dumps(tools_request) + "\n").encode())
|
||||
await process.stdin.drain()
|
||||
|
||||
# 读取工具列表响应
|
||||
tools_response = await process.stdout.readline()
|
||||
if tools_response:
|
||||
try:
|
||||
tools_data = json.loads(tools_response.decode())
|
||||
print(f"工具列表: {json.dumps(tools_data, indent=2, ensure_ascii=False)}")
|
||||
|
||||
# 如果有搜索工具,测试搜索功能
|
||||
if "result" in tools_data and "tools" in tools_data["result"]:
|
||||
for tool in tools_data["result"]["tools"]:
|
||||
tool_name = tool.get("name")
|
||||
if tool_name and ("search" in tool_name or "document" in tool_name):
|
||||
print(f"\n测试工具: {tool_name}")
|
||||
|
||||
# 测试搜索工具
|
||||
search_request = {
|
||||
"jsonrpc": "2.0",
|
||||
"id": 3,
|
||||
"method": "tools/call",
|
||||
"params": {
|
||||
"name": tool_name,
|
||||
"arguments": {
|
||||
"query": "测试查询",
|
||||
"limit": 3
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# 发送搜索请求
|
||||
process.stdin.write((json.dumps(search_request) + "\n").encode())
|
||||
await process.stdin.drain()
|
||||
|
||||
# 读取搜索响应
|
||||
search_response = await process.stdout.readline()
|
||||
if search_response:
|
||||
try:
|
||||
search_data = json.loads(search_response.decode())
|
||||
print(f"搜索结果: {json.dumps(search_data, indent=2, ensure_ascii=False)}")
|
||||
except json.JSONDecodeError:
|
||||
print(f"搜索响应解析失败: {search_response}")
|
||||
break
|
||||
except json.JSONDecodeError:
|
||||
print(f"工具列表响应解析失败: {tools_response}")
|
||||
|
||||
# 关闭进程
|
||||
process.stdin.close()
|
||||
await process.wait()
|
||||
|
||||
except Exception as e:
|
||||
print(f"测试 {server_name} 服务器时出错: {e}")
|
||||
|
||||
async def main():
|
||||
"""主函数"""
|
||||
print("开始测试MCP服务器...")
|
||||
|
||||
# 测试context7服务器
|
||||
await test_mcp_server(
|
||||
"context7",
|
||||
["npx", "-y", "@upstash/context7-mcp"],
|
||||
{"DEFAULT_MINIMUM_TOKENS": ""}
|
||||
)
|
||||
|
||||
# 测试qdrant服务器
|
||||
await test_mcp_server(
|
||||
"qdrant",
|
||||
["ssh", "ben@dev1", "cd /home/ben/qdrant && source venv/bin/activate && python qdrant_mcp_server.py"],
|
||||
{
|
||||
"QDRANT_URL": "http://dev1:6333",
|
||||
"QDRANT_API_KEY": "313131",
|
||||
"COLLECTION_NAME": "mcp",
|
||||
"EMBEDDING_MODEL": "bge-m3"
|
||||
}
|
||||
)
|
||||
|
||||
# 测试qdrant-ollama服务器
|
||||
await test_mcp_server(
|
||||
"qdrant-ollama",
|
||||
["ssh", "ben@dev1", "cd /home/ben/qdrant && source venv/bin/activate && ./start_mcp_server.sh"],
|
||||
{
|
||||
"QDRANT_URL": "http://dev1:6333",
|
||||
"QDRANT_API_KEY": "313131",
|
||||
"COLLECTION_NAME": "ollama_mcp",
|
||||
"OLLAMA_MODEL": "nomic-embed-text",
|
||||
"OLLAMA_URL": "http://dev1:11434"
|
||||
}
|
||||
)
|
||||
|
||||
print("\n所有测试完成。")
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
198
tests/mcp_servers/test_mcp_servers_improved.py
Normal file
198
tests/mcp_servers/test_mcp_servers_improved.py
Normal file
@@ -0,0 +1,198 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
改进的MCP服务器测试脚本
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import subprocess
|
||||
import sys
|
||||
from typing import Dict, Any, List, Optional
|
||||
|
||||
async def test_mcp_server(server_name: str, command: List[str], env: Dict[str, str] = None):
|
||||
"""测试MCP服务器"""
|
||||
print(f"\n=== 测试 {server_name} 服务器 ===")
|
||||
|
||||
# 设置环境变量
|
||||
process_env = {}
|
||||
if env:
|
||||
process_env.update(env)
|
||||
|
||||
try:
|
||||
# 启动服务器进程
|
||||
process = await asyncio.create_subprocess_exec(
|
||||
*command,
|
||||
stdin=asyncio.subprocess.PIPE,
|
||||
stdout=asyncio.subprocess.PIPE,
|
||||
stderr=asyncio.subprocess.PIPE,
|
||||
env=process_env
|
||||
)
|
||||
|
||||
# 读取并忽略所有非JSON输出
|
||||
buffer = ""
|
||||
while True:
|
||||
line = await process.stdout.readline()
|
||||
if not line:
|
||||
break
|
||||
|
||||
line_str = line.decode().strip()
|
||||
buffer += line_str + "\n"
|
||||
|
||||
# 尝试解析JSON
|
||||
try:
|
||||
data = json.loads(line_str)
|
||||
if "jsonrpc" in data:
|
||||
print(f"收到JSON响应: {json.dumps(data, indent=2, ensure_ascii=False)}")
|
||||
break
|
||||
except json.JSONDecodeError:
|
||||
# 不是JSON,继续读取
|
||||
continue
|
||||
|
||||
# 如果没有找到JSON响应,显示缓冲区内容
|
||||
if "jsonrpc" not in locals():
|
||||
print(f"未找到JSON响应,原始输出: {buffer}")
|
||||
return
|
||||
|
||||
# 初始化请求
|
||||
init_request = {
|
||||
"jsonrpc": "2.0",
|
||||
"id": 1,
|
||||
"method": "initialize",
|
||||
"params": {
|
||||
"protocolVersion": "2024-11-05",
|
||||
"capabilities": {
|
||||
"tools": {}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# 发送初始化请求
|
||||
process.stdin.write((json.dumps(init_request) + "\n").encode())
|
||||
await process.stdin.drain()
|
||||
|
||||
# 读取初始化响应
|
||||
init_response = await read_json_response(process)
|
||||
if init_response:
|
||||
print(f"初始化成功")
|
||||
|
||||
# 获取工具列表
|
||||
tools_request = {
|
||||
"jsonrpc": "2.0",
|
||||
"id": 2,
|
||||
"method": "tools/list"
|
||||
}
|
||||
|
||||
# 发送工具列表请求
|
||||
process.stdin.write((json.dumps(tools_request) + "\n").encode())
|
||||
await process.stdin.drain()
|
||||
|
||||
# 读取工具列表响应
|
||||
tools_response = await read_json_response(process)
|
||||
if tools_response:
|
||||
print(f"工具列表获取成功")
|
||||
|
||||
# 如果有搜索工具,测试搜索功能
|
||||
if "result" in tools_response and "tools" in tools_response["result"]:
|
||||
for tool in tools_response["result"]["tools"]:
|
||||
tool_name = tool.get("name")
|
||||
if tool_name and ("search" in tool_name or "document" in tool_name):
|
||||
print(f"\n测试工具: {tool_name}")
|
||||
|
||||
# 测试搜索工具
|
||||
search_request = {
|
||||
"jsonrpc": "2.0",
|
||||
"id": 3,
|
||||
"method": "tools/call",
|
||||
"params": {
|
||||
"name": tool_name,
|
||||
"arguments": {
|
||||
"query": "测试查询",
|
||||
"limit": 3
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# 发送搜索请求
|
||||
process.stdin.write((json.dumps(search_request) + "\n").encode())
|
||||
await process.stdin.drain()
|
||||
|
||||
# 读取搜索响应
|
||||
search_response = await read_json_response(process)
|
||||
if search_response:
|
||||
print(f"搜索测试成功")
|
||||
if "result" in search_response and "content" in search_response["result"]:
|
||||
for content in search_response["result"]["content"]:
|
||||
if content.get("type") == "text":
|
||||
print(f"搜索结果: {content.get('text', '')[:100]}...")
|
||||
break
|
||||
|
||||
# 关闭进程
|
||||
process.stdin.close()
|
||||
await process.wait()
|
||||
|
||||
except Exception as e:
|
||||
print(f"测试 {server_name} 服务器时出错: {e}")
|
||||
|
||||
async def read_json_response(process):
|
||||
"""读取JSON响应"""
|
||||
buffer = ""
|
||||
while True:
|
||||
line = await process.stdout.readline()
|
||||
if not line:
|
||||
break
|
||||
|
||||
line_str = line.decode().strip()
|
||||
buffer += line_str + "\n"
|
||||
|
||||
# 尝试解析JSON
|
||||
try:
|
||||
data = json.loads(line_str)
|
||||
if "jsonrpc" in data:
|
||||
return data
|
||||
except json.JSONDecodeError:
|
||||
# 不是JSON,继续读取
|
||||
continue
|
||||
|
||||
# 如果没有找到JSON响应,返回None
|
||||
return None
|
||||
|
||||
async def main():
|
||||
"""主函数"""
|
||||
print("开始测试MCP服务器...")
|
||||
|
||||
# 测试context7服务器
|
||||
await test_mcp_server(
|
||||
"context7",
|
||||
["npx", "-y", "@upstash/context7-mcp"],
|
||||
{"DEFAULT_MINIMUM_TOKENS": ""}
|
||||
)
|
||||
|
||||
# 测试qdrant服务器
|
||||
await test_mcp_server(
|
||||
"qdrant",
|
||||
["ssh", "ben@dev1", "cd /home/ben/qdrant && source venv/bin/activate && python qdrant_mcp_server.py"],
|
||||
{
|
||||
"QDRANT_URL": "http://dev1:6333",
|
||||
"QDRANT_API_KEY": "313131",
|
||||
"COLLECTION_NAME": "mcp",
|
||||
"EMBEDDING_MODEL": "bge-m3"
|
||||
}
|
||||
)
|
||||
|
||||
# 测试qdrant-ollama服务器
|
||||
await test_mcp_server(
|
||||
"qdrant-ollama",
|
||||
["ssh", "ben@dev1", "cd /home/ben/qdrant && source venv/bin/activate && ./start_mcp_server.sh"],
|
||||
{
|
||||
"QDRANT_URL": "http://dev1:6333",
|
||||
"QDRANT_API_KEY": "313131",
|
||||
"COLLECTION_NAME": "ollama_mcp",
|
||||
"OLLAMA_MODEL": "nomic-embed-text",
|
||||
"OLLAMA_URL": "http://dev1:11434"
|
||||
}
|
||||
)
|
||||
|
||||
print("\n所有测试完成。")
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
167
tests/mcp_servers/test_mcp_servers_simple.py
Normal file
167
tests/mcp_servers/test_mcp_servers_simple.py
Normal file
@@ -0,0 +1,167 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
简化的MCP服务器测试脚本
|
||||
"""
|
||||
|
||||
import json
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
from typing import Dict, Any, List
|
||||
|
||||
def test_mcp_server(server_name: str, command: List[str], env: Dict[str, str] = None):
|
||||
"""测试MCP服务器"""
|
||||
print(f"\n=== 测试 {server_name} 服务器 ===")
|
||||
|
||||
# 设置环境变量
|
||||
process_env = {}
|
||||
if env:
|
||||
process_env.update(env)
|
||||
|
||||
try:
|
||||
# 启动服务器进程
|
||||
process = subprocess.Popen(
|
||||
command,
|
||||
stdin=subprocess.PIPE,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
env=process_env,
|
||||
text=True
|
||||
)
|
||||
|
||||
# 等待进程启动
|
||||
time.sleep(2)
|
||||
|
||||
# 初始化请求
|
||||
init_request = {
|
||||
"jsonrpc": "2.0",
|
||||
"id": 1,
|
||||
"method": "initialize",
|
||||
"params": {
|
||||
"protocolVersion": "2024-11-05",
|
||||
"capabilities": {
|
||||
"tools": {}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# 发送初始化请求
|
||||
process.stdin.write(json.dumps(init_request) + "\n")
|
||||
process.stdin.flush()
|
||||
|
||||
# 读取初始化响应
|
||||
init_response = process.stdout.readline()
|
||||
if init_response:
|
||||
try:
|
||||
init_data = json.loads(init_response.strip())
|
||||
print(f"初始化成功: {init_data.get('result', {}).get('serverInfo', {}).get('name', '未知服务器')}")
|
||||
except json.JSONDecodeError:
|
||||
print(f"初始化响应解析失败: {init_response}")
|
||||
|
||||
# 获取工具列表
|
||||
tools_request = {
|
||||
"jsonrpc": "2.0",
|
||||
"id": 2,
|
||||
"method": "tools/list"
|
||||
}
|
||||
|
||||
# 发送工具列表请求
|
||||
process.stdin.write(json.dumps(tools_request) + "\n")
|
||||
process.stdin.flush()
|
||||
|
||||
# 读取工具列表响应
|
||||
tools_response = process.stdout.readline()
|
||||
if tools_response:
|
||||
try:
|
||||
tools_data = json.loads(tools_response.strip())
|
||||
print(f"工具列表获取成功")
|
||||
|
||||
# 如果有搜索工具,测试搜索功能
|
||||
if "result" in tools_data and "tools" in tools_data["result"]:
|
||||
for tool in tools_data["result"]["tools"]:
|
||||
tool_name = tool.get("name")
|
||||
if tool_name and ("search" in tool_name or "document" in tool_name):
|
||||
print(f"\n测试工具: {tool_name}")
|
||||
|
||||
# 测试搜索工具
|
||||
search_request = {
|
||||
"jsonrpc": "2.0",
|
||||
"id": 3,
|
||||
"method": "tools/call",
|
||||
"params": {
|
||||
"name": tool_name,
|
||||
"arguments": {
|
||||
"query": "测试查询",
|
||||
"limit": 3
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# 发送搜索请求
|
||||
process.stdin.write(json.dumps(search_request) + "\n")
|
||||
process.stdin.flush()
|
||||
|
||||
# 读取搜索响应
|
||||
search_response = process.stdout.readline()
|
||||
if search_response:
|
||||
try:
|
||||
search_data = json.loads(search_response.strip())
|
||||
print(f"搜索测试成功")
|
||||
if "result" in search_data and "content" in search_data["result"]:
|
||||
for content in search_data["result"]["content"]:
|
||||
if content.get("type") == "text":
|
||||
print(f"搜索结果: {content.get('text', '')[:100]}...")
|
||||
except json.JSONDecodeError:
|
||||
print(f"搜索响应解析失败: {search_response}")
|
||||
break
|
||||
except json.JSONDecodeError:
|
||||
print(f"工具列表响应解析失败: {tools_response}")
|
||||
|
||||
# 关闭进程
|
||||
process.stdin.close()
|
||||
process.terminate()
|
||||
process.wait()
|
||||
|
||||
except Exception as e:
|
||||
print(f"测试 {server_name} 服务器时出错: {e}")
|
||||
|
||||
def main():
|
||||
"""主函数"""
|
||||
print("开始测试MCP服务器...")
|
||||
|
||||
# 测试context7服务器
|
||||
test_mcp_server(
|
||||
"context7",
|
||||
["npx", "-y", "@upstash/context7-mcp"],
|
||||
{"DEFAULT_MINIMUM_TOKENS": ""}
|
||||
)
|
||||
|
||||
# 测试qdrant服务器
|
||||
test_mcp_server(
|
||||
"qdrant",
|
||||
["ssh", "ben@dev1", "cd /home/ben/qdrant && source venv/bin/activate && python qdrant_mcp_server.py"],
|
||||
{
|
||||
"QDRANT_URL": "http://dev1:6333",
|
||||
"QDRANT_API_KEY": "313131",
|
||||
"COLLECTION_NAME": "mcp",
|
||||
"EMBEDDING_MODEL": "bge-m3"
|
||||
}
|
||||
)
|
||||
|
||||
# 测试qdrant-ollama服务器
|
||||
test_mcp_server(
|
||||
"qdrant-ollama",
|
||||
["ssh", "ben@dev1", "cd /home/ben/qdrant && source venv/bin/activate && ./start_mcp_server.sh"],
|
||||
{
|
||||
"QDRANT_URL": "http://dev1:6333",
|
||||
"QDRANT_API_KEY": "313131",
|
||||
"COLLECTION_NAME": "ollama_mcp",
|
||||
"OLLAMA_MODEL": "nomic-embed-text",
|
||||
"OLLAMA_URL": "http://dev1:11434"
|
||||
}
|
||||
)
|
||||
|
||||
print("\n所有测试完成。")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
189
tests/mcp_servers/test_qdrant_ollama_server.py
Normal file
189
tests/mcp_servers/test_qdrant_ollama_server.py
Normal file
@@ -0,0 +1,189 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
专门测试qdrant-ollama服务器的脚本
|
||||
"""
|
||||
|
||||
import json
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
from typing import Dict, Any, List
|
||||
|
||||
def test_qdrant_ollama_server():
|
||||
"""测试qdrant-ollama服务器"""
|
||||
print("\n=== 测试 qdrant-ollama 服务器 ===")
|
||||
|
||||
try:
|
||||
# 启动服务器进程
|
||||
process = subprocess.Popen(
|
||||
["ssh", "ben@dev1", "cd /home/ben/qdrant && source venv/bin/activate && ./start_mcp_server.sh"],
|
||||
stdin=subprocess.PIPE,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
text=True
|
||||
)
|
||||
|
||||
# 读取并忽略所有非JSON输出
|
||||
buffer = ""
|
||||
json_found = False
|
||||
|
||||
# 等待进程启动并读取初始输出
|
||||
for _ in range(10): # 最多尝试10次
|
||||
line = process.stdout.readline()
|
||||
if not line:
|
||||
time.sleep(0.5)
|
||||
continue
|
||||
|
||||
line = line.strip()
|
||||
buffer += line + "\n"
|
||||
|
||||
# 尝试解析JSON
|
||||
try:
|
||||
data = json.loads(line)
|
||||
if "jsonrpc" in data:
|
||||
json_found = True
|
||||
print(f"收到JSON响应: {json.dumps(data, indent=2, ensure_ascii=False)}")
|
||||
break
|
||||
except json.JSONDecodeError:
|
||||
# 不是JSON,继续读取
|
||||
continue
|
||||
|
||||
if not json_found:
|
||||
print(f"未找到JSON响应,原始输出: {buffer}")
|
||||
process.terminate()
|
||||
process.wait()
|
||||
return
|
||||
|
||||
# 初始化请求
|
||||
init_request = {
|
||||
"jsonrpc": "2.0",
|
||||
"id": 1,
|
||||
"method": "initialize",
|
||||
"params": {
|
||||
"protocolVersion": "2024-11-05",
|
||||
"capabilities": {
|
||||
"tools": {}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# 发送初始化请求
|
||||
process.stdin.write(json.dumps(init_request) + "\n")
|
||||
process.stdin.flush()
|
||||
|
||||
# 读取初始化响应
|
||||
init_response = process.stdout.readline()
|
||||
if init_response:
|
||||
try:
|
||||
init_data = json.loads(init_response.strip())
|
||||
print(f"初始化成功: {init_data.get('result', {}).get('serverInfo', {}).get('name', '未知服务器')}")
|
||||
except json.JSONDecodeError:
|
||||
print(f"初始化响应解析失败: {init_response}")
|
||||
|
||||
# 获取工具列表
|
||||
tools_request = {
|
||||
"jsonrpc": "2.0",
|
||||
"id": 2,
|
||||
"method": "tools/list"
|
||||
}
|
||||
|
||||
# 发送工具列表请求
|
||||
process.stdin.write(json.dumps(tools_request) + "\n")
|
||||
process.stdin.flush()
|
||||
|
||||
# 读取工具列表响应
|
||||
tools_response = process.stdout.readline()
|
||||
if tools_response:
|
||||
try:
|
||||
tools_data = json.loads(tools_response.strip())
|
||||
print(f"工具列表获取成功")
|
||||
|
||||
# 如果有搜索工具,测试搜索功能
|
||||
if "result" in tools_data and "tools" in tools_data["result"]:
|
||||
for tool in tools_data["result"]["tools"]:
|
||||
tool_name = tool.get("name")
|
||||
if tool_name and ("search" in tool_name or "document" in tool_name):
|
||||
print(f"\n测试工具: {tool_name}")
|
||||
|
||||
# 先添加一个文档
|
||||
add_request = {
|
||||
"jsonrpc": "2.0",
|
||||
"id": 3,
|
||||
"method": "tools/call",
|
||||
"params": {
|
||||
"name": "add_document",
|
||||
"arguments": {
|
||||
"text": "这是一个测试文档,用于验证qdrant-ollama服务器的功能。",
|
||||
"metadata": {
|
||||
"source": "test",
|
||||
"topic": "测试"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# 发送添加文档请求
|
||||
process.stdin.write(json.dumps(add_request) + "\n")
|
||||
process.stdin.flush()
|
||||
|
||||
# 读取添加文档响应
|
||||
add_response = process.stdout.readline()
|
||||
if add_response:
|
||||
try:
|
||||
add_data = json.loads(add_response.strip())
|
||||
print(f"添加文档测试成功")
|
||||
except json.JSONDecodeError:
|
||||
print(f"添加文档响应解析失败: {add_response}")
|
||||
|
||||
# 测试搜索工具
|
||||
search_request = {
|
||||
"jsonrpc": "2.0",
|
||||
"id": 4,
|
||||
"method": "tools/call",
|
||||
"params": {
|
||||
"name": tool_name,
|
||||
"arguments": {
|
||||
"query": "测试文档",
|
||||
"limit": 3
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# 发送搜索请求
|
||||
process.stdin.write(json.dumps(search_request) + "\n")
|
||||
process.stdin.flush()
|
||||
|
||||
# 读取搜索响应
|
||||
search_response = process.stdout.readline()
|
||||
if search_response:
|
||||
try:
|
||||
search_data = json.loads(search_response.strip())
|
||||
print(f"搜索测试成功")
|
||||
if "result" in search_data and "content" in search_data["result"]:
|
||||
for content in search_data["result"]["content"]:
|
||||
if content.get("type") == "text":
|
||||
print(f"搜索结果: {content.get('text', '')[:100]}...")
|
||||
except json.JSONDecodeError:
|
||||
print(f"搜索响应解析失败: {search_response}")
|
||||
break
|
||||
except json.JSONDecodeError:
|
||||
print(f"工具列表响应解析失败: {tools_response}")
|
||||
|
||||
# 关闭进程
|
||||
process.stdin.close()
|
||||
process.terminate()
|
||||
process.wait()
|
||||
|
||||
except Exception as e:
|
||||
print(f"测试 qdrant-ollama 服务器时出错: {e}")
|
||||
|
||||
def main():
|
||||
"""主函数"""
|
||||
print("开始测试qdrant-ollama服务器...")
|
||||
|
||||
test_qdrant_ollama_server()
|
||||
|
||||
print("\n测试完成。")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
15
tests/mcp_servers/test_qdrant_ollama_tools.sh
Executable file
15
tests/mcp_servers/test_qdrant_ollama_tools.sh
Executable file
@@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
echo "测试Qdrant-Ollama MCP服务器的search_documents工具..."
|
||||
|
||||
# 测试search_documents工具
|
||||
ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && echo '{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"tools/call\",\"params\":{\"name\":\"search_documents\",\"arguments\":{\"query\":\"测试查询\",\"limit\":3}}}' | ./start_mcp_server.sh"
|
||||
|
||||
echo ""
|
||||
echo "测试Qdrant-Ollama MCP服务器的add_document工具..."
|
||||
|
||||
# 测试add_document工具
|
||||
ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && echo '{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"tools/call\",\"params\":{\"name\":\"add_document\",\"arguments\":{\"text\":\"这是一个测试文档\",\"metadata\":{\"source\":\"test\"}}}}' | ./start_mcp_server.sh"
|
||||
|
||||
echo ""
|
||||
echo "测试完成。"
|
||||
21
tests/mcp_servers/test_qdrant_ollama_tools_fixed.sh
Executable file
21
tests/mcp_servers/test_qdrant_ollama_tools_fixed.sh
Executable file
@@ -0,0 +1,21 @@
|
||||
#!/bin/bash
|
||||
|
||||
echo "测试Qdrant-Ollama MCP服务器的search_documents工具(不带filter参数)..."
|
||||
|
||||
# 测试search_documents工具(不带filter参数)
|
||||
ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && echo '{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"tools/call\",\"params\":{\"name\":\"search_documents\",\"arguments\":{\"query\":\"测试查询\",\"limit\":3}}}' | ./start_mcp_server.sh"
|
||||
|
||||
echo ""
|
||||
echo "测试Qdrant-Ollama MCP服务器的add_document工具..."
|
||||
|
||||
# 测试add_document工具
|
||||
ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && echo '{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"tools/call\",\"params\":{\"name\":\"add_document\",\"arguments\":{\"text\":\"这是一个测试文档\",\"metadata\":{\"source\":\"test\"}}}}' | ./start_mcp_server.sh"
|
||||
|
||||
echo ""
|
||||
echo "测试Qdrant-Ollama MCP服务器的list_collections工具..."
|
||||
|
||||
# 测试list_collections工具
|
||||
ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && echo '{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"tools/call\",\"params\":{\"name\":\"list_collections\",\"arguments\":{}}}' | ./start_mcp_server.sh"
|
||||
|
||||
echo ""
|
||||
echo "测试完成。"
|
||||
15
tests/mcp_servers/test_search_documents.sh
Executable file
15
tests/mcp_servers/test_search_documents.sh
Executable file
@@ -0,0 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
echo "测试Qdrant-Ollama MCP服务器的search_documents工具(不带filter参数)..."
|
||||
|
||||
# 先添加一个文档
|
||||
echo "添加测试文档..."
|
||||
ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && echo '{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"tools/call\",\"params\":{\"name\":\"add_document\",\"arguments\":{\"text\":\"人工智能是计算机科学的一个分支,致力于创建能够执行通常需要人类智能的任务的系统。\",\"metadata\":{\"source\":\"test\",\"topic\":\"AI\"}}}}' | ./start_mcp_server.sh"
|
||||
|
||||
echo ""
|
||||
echo "搜索文档..."
|
||||
# 测试search_documents工具(不带filter参数)
|
||||
ssh ben@dev1 "cd /home/ben/qdrant && source venv/bin/activate && echo '{\"jsonrpc\":\"2.0\",\"id\":1,\"method\":\"tools/call\",\"params\":{\"name\":\"search_documents\",\"arguments\":{\"query\":\"人工智能\",\"limit\":3}}}' | ./start_mcp_server.sh"
|
||||
|
||||
echo ""
|
||||
echo "测试完成。"
|
||||
116
tests/run_all_tests.sh
Executable file
116
tests/run_all_tests.sh
Executable file
@@ -0,0 +1,116 @@
|
||||
#!/bin/bash
|
||||
|
||||
# MCP服务器测试运行器
|
||||
# 自动运行所有MCP服务器测试脚本
|
||||
|
||||
set -e
|
||||
|
||||
# 颜色定义
|
||||
RED='\033[0;31m'
|
||||
GREEN='\033[0;32m'
|
||||
YELLOW='\033[1;33m'
|
||||
NC='\033[0m' # No Color
|
||||
|
||||
# 测试目录
|
||||
TEST_DIR="/root/mgmt/tests/mcp_servers"
|
||||
REPORT_FILE="/root/mgmt/tests/test_results_$(date +%Y%m%d_%H%M%S).md"
|
||||
|
||||
# 检查测试目录是否存在
|
||||
if [ ! -d "$TEST_DIR" ]; then
|
||||
echo -e "${RED}错误: 测试目录 $TEST_DIR 不存在${NC}"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# 创建测试报告头部
|
||||
cat > "$REPORT_FILE" << EOF
|
||||
# MCP服务器测试报告 - $(date '+%Y-%m-%d %H:%M:%S')
|
||||
|
||||
## 测试环境
|
||||
- 测试时间: $(date '+%Y-%m-%d %H:%M:%S')
|
||||
- 测试目录: $TEST_DIR
|
||||
- 测试类型: 自动化批量测试
|
||||
|
||||
## 测试结果概览
|
||||
|
||||
EOF
|
||||
|
||||
echo -e "${YELLOW}开始运行MCP服务器测试套件...${NC}"
|
||||
echo -e "${YELLOW}测试报告将保存到: $REPORT_FILE${NC}\n"
|
||||
|
||||
# 测试计数器
|
||||
TOTAL_TESTS=0
|
||||
PASSED_TESTS=0
|
||||
FAILED_TESTS=0
|
||||
|
||||
# 运行Shell脚本测试
|
||||
echo -e "${YELLOW}运行Shell脚本测试...${NC}"
|
||||
for test_script in "$TEST_DIR"/*.sh; do
|
||||
if [ -f "$test_script" ]; then
|
||||
TEST_NAME=$(basename "$test_script")
|
||||
echo -e "${YELLOW}运行测试: $TEST_NAME${NC}"
|
||||
|
||||
# 运行测试脚本
|
||||
if bash "$test_script" >> "$REPORT_FILE" 2>&1; then
|
||||
echo -e "${GREEN}✅ $TEST_NAME 通过${NC}"
|
||||
echo "- ✅ $TEST_NAME: 通过" >> "$REPORT_FILE"
|
||||
((PASSED_TESTS++))
|
||||
else
|
||||
echo -e "${RED}❌ $TEST_NAME 失败${NC}"
|
||||
echo "- ❌ $TEST_NAME: 失败" >> "$REPORT_FILE"
|
||||
((FAILED_TESTS++))
|
||||
fi
|
||||
((TOTAL_TESTS++))
|
||||
echo
|
||||
fi
|
||||
done
|
||||
|
||||
# 运行Python脚本测试
|
||||
echo -e "${YELLOW}运行Python脚本测试...${NC}"
|
||||
for test_script in "$TEST_DIR"/*.py; do
|
||||
if [ -f "$test_script" ]; then
|
||||
TEST_NAME=$(basename "$test_script")
|
||||
echo -e "${YELLOW}运行测试: $TEST_NAME${NC}"
|
||||
|
||||
# 运行Python测试
|
||||
if python3 "$test_script" >> "$REPORT_FILE" 2>&1; then
|
||||
echo -e "${GREEN}✅ $TEST_NAME 通过${NC}"
|
||||
echo "- ✅ $TEST_NAME: 通过" >> "$REPORT_FILE"
|
||||
((PASSED_TESTS++))
|
||||
else
|
||||
echo -e "${RED}❌ $TEST_NAME 失败${NC}"
|
||||
echo "- ❌ $TEST_NAME: 失败" >> "$REPORT_FILE"
|
||||
((FAILED_TESTS++))
|
||||
fi
|
||||
((TOTAL_TESTS++))
|
||||
echo
|
||||
fi
|
||||
done
|
||||
|
||||
# 更新测试报告
|
||||
cat >> "$REPORT_FILE" << EOF
|
||||
|
||||
## 测试统计
|
||||
- 总测试数: $TOTAL_TESTS
|
||||
- 通过测试: $PASSED_TESTS
|
||||
- 失败测试: $FAILED_TESTS
|
||||
- 通过率: $((PASSED_TESTS * 100 / TOTAL_TESTS))%
|
||||
|
||||
## 详细测试输出
|
||||
EOF
|
||||
|
||||
# 显示测试结果摘要
|
||||
echo -e "\n${YELLOW}=== 测试完成 ===${NC}"
|
||||
echo -e "总测试数: $TOTAL_TESTS"
|
||||
echo -e "通过测试: ${GREEN}$PASSED_TESTS${NC}"
|
||||
echo -e "失败测试: ${RED}$FAILED_TESTS${NC}"
|
||||
echo -e "通过率: $((PASSED_TESTS * 100 / TOTAL_TESTS))%"
|
||||
echo -e "详细报告: $REPORT_FILE"
|
||||
|
||||
# 如果所有测试都通过,返回成功
|
||||
if [ $FAILED_TESTS -eq 0 ]; then
|
||||
echo -e "\n${GREEN}所有测试均通过!${NC}"
|
||||
exit 0
|
||||
else
|
||||
echo -e "\n${RED}部分测试失败,请查看详细报告。${NC}"
|
||||
exit 1
|
||||
fi
|
||||
Reference in New Issue
Block a user