#!/usr/bin/env python3 """ Analyze accent verification files to check for distinct accent characteristics """ import os import numpy as np import soundfile as sf import scipy.signal from scipy.stats import skew, kurtosis # Paths WORKSPACE = "/root/tts" ACCENT_DIR = os.path.join(WORKSPACE, "accent_verification") def calculate_rms(audio_data): """Calculate RMS energy""" return np.sqrt(np.mean(audio_data**2)) def calculate_peak_amplitude(audio_data): """Calculate peak amplitude""" return np.max(np.abs(audio_data)) def calculate_zero_crossing_rate(audio_data): """Calculate zero crossing rate""" return np.mean(np.abs(np.diff(np.sign(audio_data)))) def calculate_spectral_centroid(audio_data, sample_rate): """Calculate spectral centroid""" frequencies, times, Sxx = scipy.signal.spectrogram(audio_data, sample_rate) if np.sum(Sxx) == 0: return 0 spectral_centroid = np.sum(frequencies[:, np.newaxis] * Sxx) / np.sum(Sxx) return spectral_centroid def calculate_skewness(audio_data): """Calculate skewness""" return skew(audio_data) def calculate_kurtosis(audio_data): """Calculate kurtosis""" return kurtosis(audio_data) def analyze_audio_quality(audio_data, sample_rate, filename): """Analyze audio quality""" rms = calculate_rms(audio_data) peak = calculate_peak_amplitude(audio_data) zcr = calculate_zero_crossing_rate(audio_data) spectral_centroid = calculate_spectral_centroid(audio_data, sample_rate) skewness = calculate_skewness(audio_data) kurt = calculate_kurtosis(audio_data) # Quality scoring score = 0 if 0.05 <= rms <= 0.3: score += 20 if peak <= 1.0: score += 20 if 0.05 <= zcr <= 0.3: score += 20 if 400 <= spectral_centroid <= 3000: score += 20 if -1 <= skewness <= 1: score += 10 if kurt <= 10: score += 10 return { 'rms': rms, 'peak': peak, 'zcr': zcr, 'spectral_centroid': spectral_centroid, 'skewness': skewness, 'kurtosis': kurt, 'score': min(score, 100) } def analyze_accent_verification(): """Analyze accent verification files""" print("=" * 70) print("ANALYZING ACCENT VERIFICATION FILES") print("=" * 70) accent_files = [] emotion_files = [] # Get all files for filename in os.listdir(ACCENT_DIR): if filename.endswith('.wav'): file_path = os.path.join(ACCENT_DIR, filename) if 'accent' in filename: accent_files.append((filename, file_path)) elif 'emotion' in filename: emotion_files.append((filename, file_path)) # Analyze accent files print("\nšŸ”Š ACCENT FILES ANALYSIS:") print("-" * 70) accent_stats = [] for filename, file_path in accent_files: try: audio_data, sample_rate = sf.read(file_path) duration = len(audio_data) / sample_rate stats = analyze_audio_quality(audio_data, sample_rate, filename) accent_stats.append({ 'filename': filename, 'duration': duration, 'rms': stats['rms'], 'zcr': stats['zcr'], 'spectral_centroid': stats['spectral_centroid'], 'score': stats['score'] }) print(f"āœ“ {filename}") print(f" Duration: {duration:.2f}s, RMS: {stats['rms']:.4f}, ZCR: {stats['zcr']:.4f}, Centroid: {stats['spectral_centroid']:.1f}Hz, Score: {stats['score']}/100") print() except Exception as e: print(f"āœ— {filename}: Error - {e}") print() # Analyze emotion files print("\n😊 EMOTION FILES ANALYSIS:") print("-" * 70) emotion_stats = [] for filename, file_path in emotion_files: try: audio_data, sample_rate = sf.read(file_path) duration = len(audio_data) / sample_rate stats = analyze_audio_quality(audio_data, sample_rate, filename) emotion_stats.append({ 'filename': filename, 'duration': duration, 'rms': stats['rms'], 'zcr': stats['zcr'], 'spectral_centroid': stats['spectral_centroid'], 'score': stats['score'] }) print(f"āœ“ {filename}") print(f" Duration: {duration:.2f}s, RMS: {stats['rms']:.4f}, ZCR: {stats['zcr']:.4f}, Centroid: {stats['spectral_centroid']:.1f}Hz, Score: {stats['score']}/100") print() except Exception as e: print(f"āœ— {filename}: Error - {e}") print() # Compare accent characteristics print("\nšŸ“Š ACCENT COMPARISON:") print("-" * 70) print("Filename | Duration | RMS | ZCR | Centroid | Score") print("-" * 70) for stats in sorted(accent_stats, key=lambda x: x['filename']): print(f"{stats['filename']:24} | {stats['duration']:8.2f} | {stats['rms']:6.4f} | {stats['zcr']:6.4f} | {stats['spectral_centroid']:8.1f} | {stats['score']:5}") # Compare emotion characteristics print("\nšŸ“Š EMOTION COMPARISON:") print("-" * 70) print("Filename | Duration | RMS | ZCR | Centroid | Score") print("-" * 70) for stats in sorted(emotion_stats, key=lambda x: x['filename']): print(f"{stats['filename']:24} | {stats['duration']:8.2f} | {stats['rms']:6.4f} | {stats['zcr']:6.4f} | {stats['spectral_centroid']:8.1f} | {stats['score']:5}") # Summary print("\n" + "=" * 70) print("SUMMARY") print("=" * 70) print(f"Total accent files: {len(accent_files)}") print(f"Total emotion files: {len(emotion_files)}") # Check if accents are distinct if len(accent_stats) >= 2: centroid_values = [s['spectral_centroid'] for s in accent_stats] centroid_std = np.std(centroid_values) zcr_values = [s['zcr'] for s in accent_stats] zcr_std = np.std(zcr_values) print(f"\nAccent distinctiveness metrics:") print(f"Spectral centroid std: {centroid_std:.2f}Hz (higher = more distinct)") print(f"Zero crossing rate std: {zcr_std:.4f} (higher = more distinct)") if centroid_std > 50 or zcr_std > 0.02: print("āœ… Accents appear to be distinct based on acoustic features") else: print("āš ļø Accents may sound similar based on acoustic features") print("\n" + "=" * 70) if __name__ == "__main__": analyze_accent_verification()