Initial commit: 炼妖壶 (Lianyaohu) - 稷下学宫AI辩论系统
- 🏛️ 稷下学宫八仙论道AI辩论系统 - 🌍 天下体系资本生态分析 - 🔒 安全配置管理 (Doppler集成) - 📊 RapidAPI永动机数据引擎 - 🎨 Streamlit现代化界面 - ✅ 清理所有敏感信息泄露
This commit is contained in:
435
internal/analysis/Mistral_KAG_Resource_Configuration_Guide.md
Normal file
435
internal/analysis/Mistral_KAG_Resource_Configuration_Guide.md
Normal file
@@ -0,0 +1,435 @@
|
||||
# Mistral + KAG 资源配置完整指南
|
||||
|
||||
## 🎯 资源配置策略概览
|
||||
|
||||
### 配置原则
|
||||
```
|
||||
资源配置策略:
|
||||
├── 成本优化 (免费资源优先)
|
||||
├── 性能平衡 (避免瓶颈)
|
||||
├── 扩展性 (支持业务增长)
|
||||
└── 可靠性 (生产级稳定)
|
||||
```
|
||||
|
||||
## 💰 免费资源配置方案
|
||||
|
||||
### 1. Mistral模型资源
|
||||
|
||||
#### OpenRouter免费额度
|
||||
```yaml
|
||||
# OpenRouter Mistral配置
|
||||
mistral_config:
|
||||
provider: "openrouter"
|
||||
models:
|
||||
free_tier:
|
||||
- model: "mistralai/mistral-7b-instruct:free"
|
||||
limit: "200 requests/day"
|
||||
context: "32k tokens"
|
||||
cost: "$0"
|
||||
- model: "mistralai/mixtral-8x7b-instruct:free"
|
||||
limit: "20 requests/day"
|
||||
context: "32k tokens"
|
||||
cost: "$0"
|
||||
|
||||
api_config:
|
||||
base_url: "https://openrouter.ai/api/v1"
|
||||
api_key: "${OPENROUTER_API_KEY}"
|
||||
headers:
|
||||
HTTP-Referer: "https://your-domain.com"
|
||||
X-Title: "太公心易系统"
|
||||
```
|
||||
|
||||
#### 官方Mistral免费层
|
||||
```yaml
|
||||
# Mistral官方免费配置
|
||||
mistral_official:
|
||||
provider: "mistral"
|
||||
free_tier:
|
||||
model: "mistral-small-latest"
|
||||
limit: "1M tokens/month"
|
||||
context: "32k tokens"
|
||||
cost: "$0"
|
||||
|
||||
api_config:
|
||||
base_url: "https://api.mistral.ai/v1"
|
||||
api_key: "${MISTRAL_API_KEY}"
|
||||
```
|
||||
|
||||
### 2. KAG部署资源
|
||||
|
||||
#### 轻量级部署配置
|
||||
```yaml
|
||||
# KAG轻量级配置
|
||||
kag_config:
|
||||
deployment_mode: "lightweight"
|
||||
|
||||
# 计算资源
|
||||
compute:
|
||||
cpu: "4 cores"
|
||||
memory: "8GB RAM"
|
||||
storage: "50GB SSD"
|
||||
gpu: "optional (CPU推理)"
|
||||
|
||||
# 组件配置
|
||||
components:
|
||||
knowledge_extractor:
|
||||
model: "BAAI/bge-large-zh-v1.5" # 免费开源
|
||||
device: "cpu"
|
||||
batch_size: 16
|
||||
|
||||
graph_builder:
|
||||
backend: "networkx" # 轻量级图库
|
||||
storage: "sqlite" # 本地存储
|
||||
|
||||
reasoning_engine:
|
||||
type: "hybrid"
|
||||
symbolic_engine: "owlready2" # 开源
|
||||
neural_engine: "mistral" # 通过API
|
||||
```
|
||||
|
||||
## 🏗️ 资源架构设计
|
||||
|
||||
### 分层资源配置
|
||||
```
|
||||
资源分层架构:
|
||||
┌─────────────────────────────────────┐
|
||||
│ 应用层资源 │
|
||||
│ - N8N: 1GB RAM │
|
||||
│ - 太公心易UI: 512MB RAM │
|
||||
├─────────────────────────────────────┤
|
||||
│ 智能体层资源 │
|
||||
│ - AutoGen: 2GB RAM │
|
||||
│ - 11仙智能体: 共享Mistral API │
|
||||
├─────────────────────────────────────┤
|
||||
│ 认知中间件层资源 │
|
||||
│ - KAG服务: 4GB RAM, 4 CPU │
|
||||
│ - 知识图谱: 2GB存储 │
|
||||
├─────────────────────────────────────┤
|
||||
│ 模型层资源 │
|
||||
│ - Mistral API: 免费额度 │
|
||||
│ - BGE嵌入: 本地CPU推理 │
|
||||
├─────────────────────────────────────┤
|
||||
│ 数据层资源 │
|
||||
│ - Milvus: 4GB RAM, 20GB存储 │
|
||||
│ - MongoDB: 2GB RAM, 10GB存储 │
|
||||
└─────────────────────────────────────┘
|
||||
|
||||
总计: 16GB RAM, 8 CPU, 80GB存储
|
||||
```
|
||||
|
||||
## 🐳 Docker Compose配置
|
||||
|
||||
### 完整的容器化部署
|
||||
```yaml
|
||||
# docker-compose.yml
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
# KAG知识中间件
|
||||
kag-service:
|
||||
image: kag:latest
|
||||
container_name: taigong-kag
|
||||
ports:
|
||||
- "8080:8080"
|
||||
environment:
|
||||
- MISTRAL_API_KEY=${MISTRAL_API_KEY}
|
||||
- OPENROUTER_API_KEY=${OPENROUTER_API_KEY}
|
||||
- KAG_MODE=lightweight
|
||||
volumes:
|
||||
- ./kag_data:/app/data
|
||||
- ./kag_config:/app/config
|
||||
mem_limit: 4g
|
||||
cpus: 2.0
|
||||
restart: unless-stopped
|
||||
depends_on:
|
||||
- milvus
|
||||
- mongodb
|
||||
|
||||
# Milvus向量数据库
|
||||
milvus:
|
||||
image: milvusdb/milvus:latest
|
||||
container_name: taigong-milvus
|
||||
ports:
|
||||
- "19530:19530"
|
||||
environment:
|
||||
- ETCD_ENDPOINTS=etcd:2379
|
||||
- MINIO_ADDRESS=minio:9000
|
||||
volumes:
|
||||
- ./milvus_data:/var/lib/milvus
|
||||
mem_limit: 4g
|
||||
cpus: 2.0
|
||||
restart: unless-stopped
|
||||
|
||||
# MongoDB文档数据库
|
||||
mongodb:
|
||||
image: mongo:latest
|
||||
container_name: taigong-mongodb
|
||||
ports:
|
||||
- "27017:27017"
|
||||
environment:
|
||||
- MONGO_INITDB_ROOT_USERNAME=admin
|
||||
- MONGO_INITDB_ROOT_PASSWORD=${MONGO_PASSWORD}
|
||||
volumes:
|
||||
- ./mongo_data:/data/db
|
||||
mem_limit: 2g
|
||||
cpus: 1.0
|
||||
restart: unless-stopped
|
||||
|
||||
# N8N工作流
|
||||
n8n:
|
||||
image: n8nio/n8n:latest
|
||||
container_name: taigong-n8n
|
||||
ports:
|
||||
- "5678:5678"
|
||||
environment:
|
||||
- N8N_BASIC_AUTH_ACTIVE=true
|
||||
- N8N_BASIC_AUTH_USER=${N8N_USER}
|
||||
- N8N_BASIC_AUTH_PASSWORD=${N8N_PASSWORD}
|
||||
- WEBHOOK_URL=https://your-domain.com
|
||||
volumes:
|
||||
- ./n8n_data:/home/node/.n8n
|
||||
mem_limit: 1g
|
||||
cpus: 1.0
|
||||
restart: unless-stopped
|
||||
|
||||
# 太公心易应用
|
||||
taigong-app:
|
||||
build: ./app
|
||||
container_name: taigong-xinyi
|
||||
ports:
|
||||
- "8501:8501"
|
||||
environment:
|
||||
- KAG_API_URL=http://kag-service:8080
|
||||
- MISTRAL_API_KEY=${MISTRAL_API_KEY}
|
||||
volumes:
|
||||
- ./app_data:/app/data
|
||||
mem_limit: 1g
|
||||
cpus: 1.0
|
||||
restart: unless-stopped
|
||||
depends_on:
|
||||
- kag-service
|
||||
|
||||
# Redis缓存
|
||||
redis:
|
||||
image: redis:alpine
|
||||
container_name: taigong-redis
|
||||
ports:
|
||||
- "6379:6379"
|
||||
volumes:
|
||||
- ./redis_data:/data
|
||||
mem_limit: 512m
|
||||
cpus: 0.5
|
||||
restart: unless-stopped
|
||||
|
||||
# 网络配置
|
||||
networks:
|
||||
default:
|
||||
name: taigong-network
|
||||
driver: bridge
|
||||
|
||||
# 数据卷
|
||||
volumes:
|
||||
kag_data:
|
||||
milvus_data:
|
||||
mongo_data:
|
||||
n8n_data:
|
||||
app_data:
|
||||
redis_data:
|
||||
```
|
||||
|
||||
## ⚙️ 环境变量配置
|
||||
|
||||
### .env文件
|
||||
```bash
|
||||
# .env
|
||||
# API密钥
|
||||
MISTRAL_API_KEY=your_mistral_api_key
|
||||
OPENROUTER_API_KEY=your_openrouter_key
|
||||
COHERE_API_KEY=your_cohere_key
|
||||
|
||||
# 数据库配置
|
||||
MONGO_PASSWORD=your_mongo_password
|
||||
REDIS_PASSWORD=your_redis_password
|
||||
|
||||
# N8N配置
|
||||
N8N_USER=admin
|
||||
N8N_PASSWORD=your_n8n_password
|
||||
|
||||
# KAG配置
|
||||
KAG_MODE=lightweight
|
||||
KAG_LOG_LEVEL=INFO
|
||||
|
||||
# Milvus配置
|
||||
MILVUS_HOST=milvus
|
||||
MILVUS_PORT=19530
|
||||
|
||||
# 应用配置
|
||||
APP_ENV=production
|
||||
APP_DEBUG=false
|
||||
```
|
||||
|
||||
## 📊 资源监控配置
|
||||
|
||||
### Prometheus + Grafana监控
|
||||
```yaml
|
||||
# monitoring/docker-compose.monitoring.yml
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
prometheus:
|
||||
image: prom/prometheus:latest
|
||||
container_name: taigong-prometheus
|
||||
ports:
|
||||
- "9090:9090"
|
||||
volumes:
|
||||
- ./prometheus.yml:/etc/prometheus/prometheus.yml
|
||||
- prometheus_data:/prometheus
|
||||
command:
|
||||
- '--config.file=/etc/prometheus/prometheus.yml'
|
||||
- '--storage.tsdb.path=/prometheus'
|
||||
mem_limit: 1g
|
||||
cpus: 0.5
|
||||
|
||||
grafana:
|
||||
image: grafana/grafana:latest
|
||||
container_name: taigong-grafana
|
||||
ports:
|
||||
- "3000:3000"
|
||||
environment:
|
||||
- GF_SECURITY_ADMIN_PASSWORD=${GRAFANA_PASSWORD}
|
||||
volumes:
|
||||
- grafana_data:/var/lib/grafana
|
||||
- ./grafana/dashboards:/etc/grafana/provisioning/dashboards
|
||||
mem_limit: 512m
|
||||
cpus: 0.5
|
||||
|
||||
volumes:
|
||||
prometheus_data:
|
||||
grafana_data:
|
||||
```
|
||||
|
||||
## 💡 成本优化策略
|
||||
|
||||
### 免费资源最大化利用
|
||||
```python
|
||||
# 智能API路由配置
|
||||
class APIResourceManager:
|
||||
def __init__(self):
|
||||
self.providers = {
|
||||
"openrouter_free": {
|
||||
"daily_limit": 200,
|
||||
"current_usage": 0,
|
||||
"models": ["mistral-7b-instruct:free"]
|
||||
},
|
||||
"mistral_free": {
|
||||
"monthly_limit": 1000000, # tokens
|
||||
"current_usage": 0,
|
||||
"models": ["mistral-small-latest"]
|
||||
},
|
||||
"local_models": {
|
||||
"unlimited": True,
|
||||
"models": ["bge-large-zh-v1.5"]
|
||||
}
|
||||
}
|
||||
|
||||
def get_best_provider(self, task_type, complexity):
|
||||
"""智能选择最佳提供商"""
|
||||
if task_type == "embedding":
|
||||
return "local_models"
|
||||
|
||||
if complexity == "simple" and self.providers["openrouter_free"]["current_usage"] < 180:
|
||||
return "openrouter_free"
|
||||
|
||||
if self.providers["mistral_free"]["current_usage"] < 900000:
|
||||
return "mistral_free"
|
||||
|
||||
# 降级到本地模型
|
||||
return "local_models"
|
||||
```
|
||||
|
||||
## 🚀 部署脚本
|
||||
|
||||
### 一键部署脚本
|
||||
```bash
|
||||
#!/bin/bash
|
||||
# deploy.sh
|
||||
|
||||
echo "🚀 开始部署太公心易 + KAG + Mistral系统..."
|
||||
|
||||
# 1. 检查依赖
|
||||
echo "📋 检查系统依赖..."
|
||||
command -v docker >/dev/null 2>&1 || { echo "请先安装Docker"; exit 1; }
|
||||
command -v docker-compose >/dev/null 2>&1 || { echo "请先安装Docker Compose"; exit 1; }
|
||||
|
||||
# 2. 创建目录结构
|
||||
echo "📁 创建目录结构..."
|
||||
mkdir -p {kag_data,milvus_data,mongo_data,n8n_data,app_data,redis_data}
|
||||
mkdir -p {kag_config,monitoring}
|
||||
|
||||
# 3. 检查环境变量
|
||||
echo "🔑 检查环境变量..."
|
||||
if [ ! -f .env ]; then
|
||||
echo "请先配置.env文件"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# 4. 启动服务
|
||||
echo "🐳 启动Docker服务..."
|
||||
docker-compose up -d
|
||||
|
||||
# 5. 等待服务就绪
|
||||
echo "⏳ 等待服务启动..."
|
||||
sleep 30
|
||||
|
||||
# 6. 健康检查
|
||||
echo "🏥 执行健康检查..."
|
||||
curl -f http://localhost:8080/health || echo "KAG服务未就绪"
|
||||
curl -f http://localhost:19530/health || echo "Milvus服务未就绪"
|
||||
curl -f http://localhost:5678/healthz || echo "N8N服务未就绪"
|
||||
|
||||
echo "✅ 部署完成!"
|
||||
echo "🌐 访问地址:"
|
||||
echo " - 太公心易应用: http://localhost:8501"
|
||||
echo " - N8N工作流: http://localhost:5678"
|
||||
echo " - KAG API: http://localhost:8080"
|
||||
echo " - 监控面板: http://localhost:3000"
|
||||
```
|
||||
|
||||
## 📈 扩展配置
|
||||
|
||||
### 生产环境扩展
|
||||
```yaml
|
||||
# 生产环境资源配置
|
||||
production_config:
|
||||
compute:
|
||||
cpu: "16 cores"
|
||||
memory: "64GB RAM"
|
||||
storage: "500GB SSD"
|
||||
gpu: "NVIDIA T4 (可选)"
|
||||
|
||||
high_availability:
|
||||
replicas: 3
|
||||
load_balancer: "nginx"
|
||||
failover: "automatic"
|
||||
|
||||
monitoring:
|
||||
metrics: "prometheus"
|
||||
logging: "elasticsearch"
|
||||
alerting: "alertmanager"
|
||||
```
|
||||
|
||||
## 🎯 总结
|
||||
|
||||
**推荐的资源配置策略:**
|
||||
|
||||
1. **开发/测试**: 使用免费API + 轻量级部署
|
||||
2. **小规模生产**: 混合免费+付费API + 中等资源
|
||||
3. **大规模生产**: 私有化部署 + 充足资源
|
||||
|
||||
**关键配置要点:**
|
||||
- ✅ 充分利用免费API额度
|
||||
- ✅ 智能路由避免超限
|
||||
- ✅ 容器化部署便于扩展
|
||||
- ✅ 监控资源使用情况
|
||||
|
||||
想要我帮你根据你的具体需求调整这个配置方案吗?🤔
|
||||
Reference in New Issue
Block a user