10 KiB
10 KiB
Mistral + KAG 资源配置完整指南
🎯 资源配置策略概览
配置原则
资源配置策略:
├── 成本优化 (免费资源优先)
├── 性能平衡 (避免瓶颈)
├── 扩展性 (支持业务增长)
└── 可靠性 (生产级稳定)
💰 免费资源配置方案
1. Mistral模型资源
OpenRouter免费额度
# OpenRouter Mistral配置
mistral_config:
provider: "openrouter"
models:
free_tier:
- model: "mistralai/mistral-7b-instruct:free"
limit: "200 requests/day"
context: "32k tokens"
cost: "$0"
- model: "mistralai/mixtral-8x7b-instruct:free"
limit: "20 requests/day"
context: "32k tokens"
cost: "$0"
api_config:
base_url: "https://openrouter.ai/api/v1"
api_key: "${OPENROUTER_API_KEY}"
headers:
HTTP-Referer: "https://your-domain.com"
X-Title: "太公心易系统"
官方Mistral免费层
# Mistral官方免费配置
mistral_official:
provider: "mistral"
free_tier:
model: "mistral-small-latest"
limit: "1M tokens/month"
context: "32k tokens"
cost: "$0"
api_config:
base_url: "https://api.mistral.ai/v1"
api_key: "${MISTRAL_API_KEY}"
2. KAG部署资源
轻量级部署配置
# KAG轻量级配置
kag_config:
deployment_mode: "lightweight"
# 计算资源
compute:
cpu: "4 cores"
memory: "8GB RAM"
storage: "50GB SSD"
gpu: "optional (CPU推理)"
# 组件配置
components:
knowledge_extractor:
model: "BAAI/bge-large-zh-v1.5" # 免费开源
device: "cpu"
batch_size: 16
graph_builder:
backend: "networkx" # 轻量级图库
storage: "sqlite" # 本地存储
reasoning_engine:
type: "hybrid"
symbolic_engine: "owlready2" # 开源
neural_engine: "mistral" # 通过API
🏗️ 资源架构设计
分层资源配置
资源分层架构:
┌─────────────────────────────────────┐
│ 应用层资源 │
│ - N8N: 1GB RAM │
│ - 太公心易UI: 512MB RAM │
├─────────────────────────────────────┤
│ 智能体层资源 │
│ - AutoGen: 2GB RAM │
│ - 11仙智能体: 共享Mistral API │
├─────────────────────────────────────┤
│ 认知中间件层资源 │
│ - KAG服务: 4GB RAM, 4 CPU │
│ - 知识图谱: 2GB存储 │
├─────────────────────────────────────┤
│ 模型层资源 │
│ - Mistral API: 免费额度 │
│ - BGE嵌入: 本地CPU推理 │
├─────────────────────────────────────┤
│ 数据层资源 │
│ - Milvus: 4GB RAM, 20GB存储 │
│ - MongoDB: 2GB RAM, 10GB存储 │
└─────────────────────────────────────┘
总计: 16GB RAM, 8 CPU, 80GB存储
🐳 Docker Compose配置
完整的容器化部署
# docker-compose.yml
version: '3.8'
services:
# KAG知识中间件
kag-service:
image: kag:latest
container_name: taigong-kag
ports:
- "8080:8080"
environment:
- MISTRAL_API_KEY=${MISTRAL_API_KEY}
- OPENROUTER_API_KEY=${OPENROUTER_API_KEY}
- KAG_MODE=lightweight
volumes:
- ./kag_data:/app/data
- ./kag_config:/app/config
mem_limit: 4g
cpus: 2.0
restart: unless-stopped
depends_on:
- milvus
- mongodb
# Milvus向量数据库
milvus:
image: milvusdb/milvus:latest
container_name: taigong-milvus
ports:
- "19530:19530"
environment:
- ETCD_ENDPOINTS=etcd:2379
- MINIO_ADDRESS=minio:9000
volumes:
- ./milvus_data:/var/lib/milvus
mem_limit: 4g
cpus: 2.0
restart: unless-stopped
# MongoDB文档数据库
mongodb:
image: mongo:latest
container_name: taigong-mongodb
ports:
- "27017:27017"
environment:
- MONGO_INITDB_ROOT_USERNAME=admin
- MONGO_INITDB_ROOT_PASSWORD=${MONGO_PASSWORD}
volumes:
- ./mongo_data:/data/db
mem_limit: 2g
cpus: 1.0
restart: unless-stopped
# N8N工作流
n8n:
image: n8nio/n8n:latest
container_name: taigong-n8n
ports:
- "5678:5678"
environment:
- N8N_BASIC_AUTH_ACTIVE=true
- N8N_BASIC_AUTH_USER=${N8N_USER}
- N8N_BASIC_AUTH_PASSWORD=${N8N_PASSWORD}
- WEBHOOK_URL=https://your-domain.com
volumes:
- ./n8n_data:/home/node/.n8n
mem_limit: 1g
cpus: 1.0
restart: unless-stopped
# 太公心易应用
taigong-app:
build: ./app
container_name: taigong-xinyi
ports:
- "8501:8501"
environment:
- KAG_API_URL=http://kag-service:8080
- MISTRAL_API_KEY=${MISTRAL_API_KEY}
volumes:
- ./app_data:/app/data
mem_limit: 1g
cpus: 1.0
restart: unless-stopped
depends_on:
- kag-service
# Redis缓存
redis:
image: redis:alpine
container_name: taigong-redis
ports:
- "6379:6379"
volumes:
- ./redis_data:/data
mem_limit: 512m
cpus: 0.5
restart: unless-stopped
# 网络配置
networks:
default:
name: taigong-network
driver: bridge
# 数据卷
volumes:
kag_data:
milvus_data:
mongo_data:
n8n_data:
app_data:
redis_data:
⚙️ 环境变量配置
.env文件
# .env
# API密钥
MISTRAL_API_KEY=your_mistral_api_key
OPENROUTER_API_KEY=your_openrouter_key
COHERE_API_KEY=your_cohere_key
# 数据库配置
MONGO_PASSWORD=your_mongo_password
REDIS_PASSWORD=your_redis_password
# N8N配置
N8N_USER=admin
N8N_PASSWORD=your_n8n_password
# KAG配置
KAG_MODE=lightweight
KAG_LOG_LEVEL=INFO
# Milvus配置
MILVUS_HOST=milvus
MILVUS_PORT=19530
# 应用配置
APP_ENV=production
APP_DEBUG=false
📊 资源监控配置
Prometheus + Grafana监控
# monitoring/docker-compose.monitoring.yml
version: '3.8'
services:
prometheus:
image: prom/prometheus:latest
container_name: taigong-prometheus
ports:
- "9090:9090"
volumes:
- ./prometheus.yml:/etc/prometheus/prometheus.yml
- prometheus_data:/prometheus
command:
- '--config.file=/etc/prometheus/prometheus.yml'
- '--storage.tsdb.path=/prometheus'
mem_limit: 1g
cpus: 0.5
grafana:
image: grafana/grafana:latest
container_name: taigong-grafana
ports:
- "3000:3000"
environment:
- GF_SECURITY_ADMIN_PASSWORD=${GRAFANA_PASSWORD}
volumes:
- grafana_data:/var/lib/grafana
- ./grafana/dashboards:/etc/grafana/provisioning/dashboards
mem_limit: 512m
cpus: 0.5
volumes:
prometheus_data:
grafana_data:
💡 成本优化策略
免费资源最大化利用
# 智能API路由配置
class APIResourceManager:
def __init__(self):
self.providers = {
"openrouter_free": {
"daily_limit": 200,
"current_usage": 0,
"models": ["mistral-7b-instruct:free"]
},
"mistral_free": {
"monthly_limit": 1000000, # tokens
"current_usage": 0,
"models": ["mistral-small-latest"]
},
"local_models": {
"unlimited": True,
"models": ["bge-large-zh-v1.5"]
}
}
def get_best_provider(self, task_type, complexity):
"""智能选择最佳提供商"""
if task_type == "embedding":
return "local_models"
if complexity == "simple" and self.providers["openrouter_free"]["current_usage"] < 180:
return "openrouter_free"
if self.providers["mistral_free"]["current_usage"] < 900000:
return "mistral_free"
# 降级到本地模型
return "local_models"
🚀 部署脚本
一键部署脚本
#!/bin/bash
# deploy.sh
echo "🚀 开始部署太公心易 + KAG + Mistral系统..."
# 1. 检查依赖
echo "📋 检查系统依赖..."
command -v docker >/dev/null 2>&1 || { echo "请先安装Docker"; exit 1; }
command -v docker-compose >/dev/null 2>&1 || { echo "请先安装Docker Compose"; exit 1; }
# 2. 创建目录结构
echo "📁 创建目录结构..."
mkdir -p {kag_data,milvus_data,mongo_data,n8n_data,app_data,redis_data}
mkdir -p {kag_config,monitoring}
# 3. 检查环境变量
echo "🔑 检查环境变量..."
if [ ! -f .env ]; then
echo "请先配置.env文件"
exit 1
fi
# 4. 启动服务
echo "🐳 启动Docker服务..."
docker-compose up -d
# 5. 等待服务就绪
echo "⏳ 等待服务启动..."
sleep 30
# 6. 健康检查
echo "🏥 执行健康检查..."
curl -f http://localhost:8080/health || echo "KAG服务未就绪"
curl -f http://localhost:19530/health || echo "Milvus服务未就绪"
curl -f http://localhost:5678/healthz || echo "N8N服务未就绪"
echo "✅ 部署完成!"
echo "🌐 访问地址:"
echo " - 太公心易应用: http://localhost:8501"
echo " - N8N工作流: http://localhost:5678"
echo " - KAG API: http://localhost:8080"
echo " - 监控面板: http://localhost:3000"
📈 扩展配置
生产环境扩展
# 生产环境资源配置
production_config:
compute:
cpu: "16 cores"
memory: "64GB RAM"
storage: "500GB SSD"
gpu: "NVIDIA T4 (可选)"
high_availability:
replicas: 3
load_balancer: "nginx"
failover: "automatic"
monitoring:
metrics: "prometheus"
logging: "elasticsearch"
alerting: "alertmanager"
🎯 总结
推荐的资源配置策略:
- 开发/测试: 使用免费API + 轻量级部署
- 小规模生产: 混合免费+付费API + 中等资源
- 大规模生产: 私有化部署 + 充足资源
关键配置要点:
- ✅ 充分利用免费API额度
- ✅ 智能路由避免超限
- ✅ 容器化部署便于扩展
- ✅ 监控资源使用情况
想要我帮你根据你的具体需求调整这个配置方案吗?🤔