239 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
			
		
		
	
	
			239 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
| # 太公心易 FSM 系统深度分析
 | ||
| 
 | ||
| ## 🎯 系统概述
 | ||
| 
 | ||
| 基于 `internal/fsm.md` 中的设计,"太公心易"系统是一个融合道家哲学与现代 AI 技术的有限状态机,通过神话隐喻来构建可解释的 AI 决策系统。
 | ||
| 
 | ||
| ## 🔄 FSM 状态分析
 | ||
| 
 | ||
| ### 当前状态流设计
 | ||
| ```
 | ||
| Collecting → Divergence → Refine → ExternalFetch → Report → Actuate
 | ||
| ```
 | ||
| 
 | ||
| ### 状态详细分析
 | ||
| 
 | ||
| #### 1. Collecting(聚仙楼 - 白虎观会议)
 | ||
| **功能**: 多智能体信息收集
 | ||
| **技术映射**: AutoGen 多 Agent 协作
 | ||
| **优势**: 
 | ||
| - 多视角信息汇聚
 | ||
| - 并行处理能力
 | ||
| - 减少单点偏见
 | ||
| 
 | ||
| **潜在问题**:
 | ||
| - 信息过载风险
 | ||
| - Agent 间可能产生循环争论
 | ||
| - 缺乏收敛机制
 | ||
| 
 | ||
| **改进建议**:
 | ||
| ```python
 | ||
| # 添加收敛条件
 | ||
| class CollectingState:
 | ||
|     def __init__(self):
 | ||
|         self.max_rounds = 3
 | ||
|         self.consensus_threshold = 0.7
 | ||
|         self.timeout = 300  # 5分钟超时
 | ||
| ```
 | ||
| 
 | ||
| #### 2. Divergence(七嘴八舌 - 幻觉丛生)
 | ||
| **功能**: 识别和处理信息冲突
 | ||
| **技术映射**: 冲突检测与幻觉过滤
 | ||
| **哲学意义**: 承认"兼听则明"过程中必然的混乱
 | ||
| 
 | ||
| **关键挑战**:
 | ||
| - 如何区分有价值的分歧与无意义的噪音
 | ||
| - 幻觉检测的准确性
 | ||
| - 保留创新观点 vs 去除错误信息
 | ||
| 
 | ||
| **技术实现**:
 | ||
| ```python
 | ||
| class DivergenceHandler:
 | ||
|     def detect_hallucinations(self, agent_outputs):
 | ||
|         # 1. 事实一致性检查
 | ||
|         # 2. 逻辑连贯性验证  
 | ||
|         # 3. 来源可信度评估
 | ||
|         pass
 | ||
|     
 | ||
|     def preserve_valuable_dissent(self, conflicting_views):
 | ||
|         # 保留有价值的不同观点
 | ||
|         pass
 | ||
| ```
 | ||
| 
 | ||
| #### 3. Refine(太上老君 - 炼丹整理)
 | ||
| **功能**: 信息抽象与结构化
 | ||
| **核心矛盾**: "要整理则一定丢失信息"
 | ||
| 
 | ||
| **信息损失分析**:
 | ||
| - **必要损失**: 冗余信息、噪音数据
 | ||
| - **有害损失**: 关键细节、边缘案例
 | ||
| - **平衡策略**: 分层抽象,保留可追溯性
 | ||
| 
 | ||
| **实现建议**:
 | ||
| ```python
 | ||
| class RefinementEngine:
 | ||
|     def __init__(self):
 | ||
|         self.abstraction_levels = ['detail', 'summary', 'conclusion']
 | ||
|         self.traceability_map = {}  # 保持信息溯源
 | ||
|     
 | ||
|     def hierarchical_abstraction(self, raw_data):
 | ||
|         # 分层抽象,保留不同粒度的信息
 | ||
|         return {
 | ||
|             'executive_summary': self.extract_key_points(raw_data),
 | ||
|             'detailed_analysis': self.preserve_important_details(raw_data),
 | ||
|             'source_mapping': self.create_traceability(raw_data)
 | ||
|         }
 | ||
| ```
 | ||
| 
 | ||
| #### 4. ExternalFetch(灵宝道君 - 撒豆成兵)
 | ||
| **功能**: 多源验证与事实核查
 | ||
| **核心原则**: "不用来源相同的API"
 | ||
| 
 | ||
| **架构设计**:
 | ||
| ```python
 | ||
| class ExternalVerificationSystem:
 | ||
|     def __init__(self):
 | ||
|         self.data_sources = {
 | ||
|             'financial': ['SEC', 'Bloomberg', 'Reuters'],
 | ||
|             'news': ['RSS feeds', 'Twitter API', 'Google News'],
 | ||
|             'academic': ['arXiv', 'SSRN', 'PubMed'],
 | ||
|             'government': ['Fed', 'Treasury', 'BLS']
 | ||
|         }
 | ||
|     
 | ||
|     def cross_verify(self, claim, source_diversity=True):
 | ||
|         # 确保使用不同类型的数据源
 | ||
|         selected_sources = self.select_diverse_sources(claim)
 | ||
|         results = []
 | ||
|         for source in selected_sources:
 | ||
|             result = self.query_source(source, claim)
 | ||
|             results.append(result)
 | ||
|         return self.reconcile_results(results)
 | ||
| ```
 | ||
| 
 | ||
| #### 5. Report(呈元始天尊)
 | ||
| **功能**: 结构化报告生成
 | ||
| **输出层次**: 
 | ||
| - 标的多空(微观决策)
 | ||
| - 板块十二长生(中观周期)
 | ||
| - 产业24节气(宏观趋势)
 | ||
| - 国运元会运世(超宏观预测)
 | ||
| 
 | ||
| #### 6. Actuate(系统执行)
 | ||
| **功能**: 决策执行与反馈
 | ||
| **包含**: 交易信号、风险警报、策略调整
 | ||
| 
 | ||
| ## 🔧 技术实现建议
 | ||
| 
 | ||
| ### 1. AutoGen 集成架构
 | ||
| ```python
 | ||
| # 八仙智能体配置
 | ||
| IMMORTAL_AGENTS = {
 | ||
|     'tie_guai_li': {'role': '宏观经济分析', 'model': 'gemini-2.5-flash'},
 | ||
|     'han_zhong_li': {'role': '战略部署', 'model': 'gemini-2.5-flash'},
 | ||
|     'zhang_guo_lao': {'role': '逆向分析', 'model': 'gemini-2.5-flash'},
 | ||
|     'lu_dong_bin': {'role': '心理博弈', 'model': 'gemini-2.5-flash'},
 | ||
|     'lan_cai_he': {'role': '潜力发现', 'model': 'gemini-2.5-flash'},
 | ||
|     'he_xian_gu': {'role': 'ESG政策', 'model': 'gemini-2.5-flash'},
 | ||
|     'han_xiang_zi': {'role': '数据可视化', 'model': 'gemini-2.5-flash'},
 | ||
|     'cao_guo_jiu': {'role': '合规筛查', 'model': 'gemini-2.5-flash'}
 | ||
| }
 | ||
| ```
 | ||
| 
 | ||
| ### 2. N8N 工作流集成
 | ||
| ```yaml
 | ||
| # 兜率宫工作流
 | ||
| workflow_name: "tusita_palace_verification"
 | ||
| triggers:
 | ||
|   - webhook: "refine_complete"
 | ||
| nodes:
 | ||
|   - name: "data_fetcher"
 | ||
|     type: "HTTP Request"
 | ||
|     parameters:
 | ||
|       method: "GET"
 | ||
|       url: "{{ $json.verification_targets }}"
 | ||
|   - name: "fact_checker"
 | ||
|     type: "Code"
 | ||
|     parameters:
 | ||
|       jsCode: |
 | ||
|         // 事实核查逻辑
 | ||
|         return items.map(item => ({
 | ||
|           ...item,
 | ||
|           verified: checkFacts(item.claim)
 | ||
|         }));        
 | ||
| ```
 | ||
| 
 | ||
| ### 3. 状态机实现
 | ||
| ```python
 | ||
| from enum import Enum
 | ||
| from typing import Dict, Any, Optional
 | ||
| 
 | ||
| class FSMState(Enum):
 | ||
|     COLLECTING = "collecting"
 | ||
|     DIVERGENCE = "divergence" 
 | ||
|     REFINE = "refine"
 | ||
|     EXTERNAL_FETCH = "external_fetch"
 | ||
|     REPORT = "report"
 | ||
|     ACTUATE = "actuate"
 | ||
| 
 | ||
| class TaigongXinyiFSM:
 | ||
|     def __init__(self):
 | ||
|         self.current_state = FSMState.COLLECTING
 | ||
|         self.context = {}
 | ||
|         self.transition_rules = self._define_transitions()
 | ||
|     
 | ||
|     def _define_transitions(self):
 | ||
|         return {
 | ||
|             FSMState.COLLECTING: [FSMState.DIVERGENCE, FSMState.COLLECTING],  # 可循环
 | ||
|             FSMState.DIVERGENCE: [FSMState.REFINE],
 | ||
|             FSMState.REFINE: [FSMState.EXTERNAL_FETCH],
 | ||
|             FSMState.EXTERNAL_FETCH: [FSMState.REPORT],
 | ||
|             FSMState.REPORT: [FSMState.ACTUATE, FSMState.COLLECTING],  # 可重新开始
 | ||
|             FSMState.ACTUATE: [FSMState.COLLECTING]  # 新一轮开始
 | ||
|         }
 | ||
|     
 | ||
|     def transition(self, trigger: str, context: Dict[str, Any]) -> bool:
 | ||
|         # 状态转换逻辑
 | ||
|         pass
 | ||
| ```
 | ||
| 
 | ||
| ## 🎭 哲学价值与技术优势
 | ||
| 
 | ||
| ### 道家思想的技术映射
 | ||
| 1. **无为而治** → 自动化决策,减少人工干预
 | ||
| 2. **阴阳平衡** → 多视角平衡,避免极端偏见  
 | ||
| 3. **道法自然** → 遵循市场规律,不强求预测
 | ||
| 4. **返璞归真** → 复杂系统的简洁表达
 | ||
| 
 | ||
| ### 可解释性优势
 | ||
| - 神话隐喻使复杂系统易于理解
 | ||
| - 每个"神仙"角色对应明确的功能模块
 | ||
| - 状态转换过程清晰可追踪
 | ||
| 
 | ||
| ## ⚠️ 潜在风险与挑战
 | ||
| 
 | ||
| ### 1. 性能风险
 | ||
| - 多轮验证可能导致延迟
 | ||
| - 外部API调用的可靠性问题
 | ||
| - 状态机复杂度随功能增加而上升
 | ||
| 
 | ||
| ### 2. 准确性风险  
 | ||
| - 信息损失可能影响决策质量
 | ||
| - 多源验证可能产生新的偏见
 | ||
| - 抽象层次选择的主观性
 | ||
| 
 | ||
| ### 3. 工程挑战
 | ||
| - AutoGen与N8N的集成复杂度
 | ||
| - 错误处理和容错机制
 | ||
| - 系统监控和调试困难
 | ||
| 
 | ||
| ## 🚀 下一步实现计划
 | ||
| 
 | ||
| 1. **MVP开发**: 实现基础FSM框架
 | ||
| 2. **Agent配置**: 配置八仙智能体
 | ||
| 3. **N8N集成**: 建立兜率宫工作流
 | ||
| 4. **测试验证**: 小规模场景测试
 | ||
| 5. **性能优化**: 基于测试结果优化
 | ||
| 6. **生产部署**: 逐步扩大应用范围
 | ||
| 
 | ||
| 这个系统设计体现了"中学为体,西学为用"的哲学,是传统智慧与现代技术的创新融合。
 |