8.4 KiB
8.4 KiB
炼妖壶调用OpenManus集成方案
🎯 架构设计
炼妖壶 (Cauldron) ←→ OpenManus (爬虫服务)
↓ ↓
太公心易分析系统 Playwright爬虫引擎
↓ ↓
八仙论道辩论 Seeking Alpha数据
🔌 集成方式
1. HTTP API调用 (推荐)
OpenManus端提供RESTful API
# OpenManus项目中
from fastapi import FastAPI
from playwright.async_api import async_playwright
app = FastAPI()
@app.post("/scrape/seekingalpha")
async def scrape_seeking_alpha(request: ScrapeRequest):
async with async_playwright() as p:
browser = await p.chromium.launch(headless=True)
page = await browser.new_page()
# 设置反检测
await page.set_extra_http_headers({
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)'
})
await page.goto(request.url)
content = await page.content()
await browser.close()
return {"content": content, "status": "success"}
炼妖壶端调用
# 在你的炼妖壶项目中
import httpx
class OpenManusClient:
def __init__(self, base_url: str, api_key: str = None):
self.base_url = base_url
self.api_key = api_key
self.client = httpx.AsyncClient()
async def scrape_seeking_alpha(self, url: str):
"""调用OpenManus爬取Seeking Alpha"""
headers = {}
if self.api_key:
headers['Authorization'] = f'Bearer {self.api_key}'
response = await self.client.post(
f"{self.base_url}/scrape/seekingalpha",
json={"url": url},
headers=headers
)
return response.json()
# 使用示例
openmanus = OpenManusClient("https://openmanus.your-domain.com")
result = await openmanus.scrape_seeking_alpha(
"https://seekingalpha.com/pr/20162773-ai-device-startup..."
)
2. MCP协议集成 (最优雅)
OpenManus作为MCP服务
# OpenManus项目中实现MCP服务器
from mcp import MCPServer
class OpenManusMCPServer(MCPServer):
def __init__(self):
super().__init__("openmanus-scraper")
self.register_tool("scrape_seeking_alpha", self.scrape_seeking_alpha)
async def scrape_seeking_alpha(self, url: str, extract_type: str = "article"):
"""MCP工具:爬取Seeking Alpha内容"""
# Playwright爬虫逻辑
return {
"url": url,
"title": extracted_title,
"content": extracted_content,
"metadata": metadata
}
炼妖壶端配置
# mcp_services.yml中添加
services:
- name: openmanus-scraper
type: stdio # 或 http
command: python
args: ["-m", "openmanus.mcp_server"]
env:
OPENMANUS_API_URL: "https://openmanus.your-domain.com"
OPENMANUS_API_KEY: "${OPENMANUS_API_KEY}"
dependencies: ["python>=3.9", "playwright"]
description: "OpenManus网页爬虫服务"
3. 消息队列异步调用
使用Redis/RabbitMQ
# 炼妖壶端发送任务
import redis
import json
class OpenManusQueue:
def __init__(self, redis_url: str):
self.redis = redis.from_url(redis_url)
async def submit_scrape_task(self, url: str, callback_url: str = None):
"""提交爬虫任务到队列"""
task = {
"id": generate_task_id(),
"url": url,
"type": "seeking_alpha",
"callback_url": callback_url,
"timestamp": datetime.utcnow().isoformat()
}
self.redis.lpush("openmanus:tasks", json.dumps(task))
return task["id"]
async def get_result(self, task_id: str):
"""获取爬虫结果"""
result = self.redis.get(f"openmanus:result:{task_id}")
return json.loads(result) if result else None
4. gRPC高性能调用
OpenManus gRPC服务
// openmanus.proto
service OpenManusService {
rpc ScrapeSeekingAlpha(ScrapeRequest) returns (ScrapeResponse);
rpc GetTaskStatus(TaskRequest) returns (TaskResponse);
}
message ScrapeRequest {
string url = 1;
string extract_type = 2;
map<string, string> options = 3;
}
炼妖壶gRPC客户端
import grpc
from openmanus_pb2_grpc import OpenManusServiceStub
class OpenManusGRPCClient:
def __init__(self, server_address: str):
self.channel = grpc.aio.insecure_channel(server_address)
self.stub = OpenManusServiceStub(self.channel)
async def scrape_seeking_alpha(self, url: str):
request = ScrapeRequest(url=url, extract_type="article")
response = await self.stub.ScrapeSeekingAlpha(request)
return response
🔧 炼妖壶中的具体集成
1. 在N8N工作流中集成
// N8N自定义节点
{
"name": "OpenManus Scraper",
"type": "http-request",
"url": "https://openmanus.your-domain.com/scrape/seekingalpha",
"method": "POST",
"body": {
"url": "{{$json.article_url}}",
"extract_type": "full_article"
}
}
2. 在八仙论道中使用
# jixia_academy_clean/core/enhanced_jixia_agents.py
from openmanus_client import OpenManusClient
class EnhancedJixiaAgent:
def __init__(self):
self.openmanus = OpenManusClient(
base_url=os.getenv("OPENMANUS_API_URL"),
api_key=os.getenv("OPENMANUS_API_KEY")
)
async def research_topic(self, topic: str):
"""研究特定话题,使用OpenManus获取最新资讯"""
# 搜索相关文章
search_urls = await self.search_seeking_alpha(topic)
# 批量爬取内容
articles = []
for url in search_urls[:5]: # 限制数量
content = await self.openmanus.scrape_seeking_alpha(url)
articles.append(content)
# 分析内容并生成辩论观点
return self.generate_debate_points(articles)
3. 在太公心易系统中集成
# src/core/xinyi_system.py
class XinyiAnalysisEngine:
def __init__(self):
self.openmanus = OpenManusClient(
base_url=os.getenv("OPENMANUS_API_URL")
)
async def analyze_market_sentiment(self, symbol: str):
"""分析市场情绪,结合爬虫数据"""
# 获取Seeking Alpha上的相关分析
articles = await self.get_symbol_analysis(symbol)
# 结合太公心易的卦象分析
sentiment_score = self.calculate_sentiment(articles)
hexagram = self.generate_hexagram(sentiment_score)
return {
"symbol": symbol,
"sentiment": sentiment_score,
"hexagram": hexagram,
"articles": articles
}
🚀 部署和配置
1. 环境变量配置
# .env文件中添加
OPENMANUS_API_URL=https://openmanus.your-domain.com
OPENMANUS_API_KEY=your-secret-api-key
OPENMANUS_TIMEOUT=30
OPENMANUS_RETRY_COUNT=3
2. Docker Compose集成
# docker-compose.yml
version: '3.8'
services:
cauldron:
build: .
environment:
- OPENMANUS_API_URL=http://openmanus:8000
depends_on:
- openmanus
openmanus:
image: your-registry/openmanus:latest
ports:
- "8001:8000"
environment:
- PLAYWRIGHT_BROWSERS_PATH=/ms-playwright
3. 监控和日志
# 添加监控
import logging
from prometheus_client import Counter, Histogram
openmanus_requests = Counter('openmanus_requests_total', 'Total OpenManus requests')
openmanus_duration = Histogram('openmanus_request_duration_seconds', 'OpenManus request duration')
class MonitoredOpenManusClient(OpenManusClient):
async def scrape_seeking_alpha(self, url: str):
openmanus_requests.inc()
with openmanus_duration.time():
try:
result = await super().scrape_seeking_alpha(url)
logging.info(f"Successfully scraped: {url}")
return result
except Exception as e:
logging.error(f"Failed to scrape {url}: {e}")
raise
💡 推荐方案
基于你的项目特点,我推荐:
- 主要方案: HTTP API + MCP协议
- 备用方案: 消息队列(处理大量任务时)
- 监控: Prometheus + Grafana
- 缓存: Redis缓存爬虫结果
这样既保持了架构的清晰分离,又能充分利用OpenManus的爬虫能力!