435 lines
10 KiB
Markdown
435 lines
10 KiB
Markdown
# Mistral + KAG 资源配置完整指南
|
|
|
|
## 🎯 资源配置策略概览
|
|
|
|
### 配置原则
|
|
```
|
|
资源配置策略:
|
|
├── 成本优化 (免费资源优先)
|
|
├── 性能平衡 (避免瓶颈)
|
|
├── 扩展性 (支持业务增长)
|
|
└── 可靠性 (生产级稳定)
|
|
```
|
|
|
|
## 💰 免费资源配置方案
|
|
|
|
### 1. Mistral模型资源
|
|
|
|
#### OpenRouter免费额度
|
|
```yaml
|
|
# OpenRouter Mistral配置
|
|
mistral_config:
|
|
provider: "openrouter"
|
|
models:
|
|
free_tier:
|
|
- model: "mistralai/mistral-7b-instruct:free"
|
|
limit: "200 requests/day"
|
|
context: "32k tokens"
|
|
cost: "$0"
|
|
- model: "mistralai/mixtral-8x7b-instruct:free"
|
|
limit: "20 requests/day"
|
|
context: "32k tokens"
|
|
cost: "$0"
|
|
|
|
api_config:
|
|
base_url: "https://openrouter.ai/api/v1"
|
|
api_key: "${OPENROUTER_API_KEY}"
|
|
headers:
|
|
HTTP-Referer: "https://your-domain.com"
|
|
X-Title: "太公心易系统"
|
|
```
|
|
|
|
#### 官方Mistral免费层
|
|
```yaml
|
|
# Mistral官方免费配置
|
|
mistral_official:
|
|
provider: "mistral"
|
|
free_tier:
|
|
model: "mistral-small-latest"
|
|
limit: "1M tokens/month"
|
|
context: "32k tokens"
|
|
cost: "$0"
|
|
|
|
api_config:
|
|
base_url: "https://api.mistral.ai/v1"
|
|
api_key: "${MISTRAL_API_KEY}"
|
|
```
|
|
|
|
### 2. KAG部署资源
|
|
|
|
#### 轻量级部署配置
|
|
```yaml
|
|
# KAG轻量级配置
|
|
kag_config:
|
|
deployment_mode: "lightweight"
|
|
|
|
# 计算资源
|
|
compute:
|
|
cpu: "4 cores"
|
|
memory: "8GB RAM"
|
|
storage: "50GB SSD"
|
|
gpu: "optional (CPU推理)"
|
|
|
|
# 组件配置
|
|
components:
|
|
knowledge_extractor:
|
|
model: "BAAI/bge-large-zh-v1.5" # 免费开源
|
|
device: "cpu"
|
|
batch_size: 16
|
|
|
|
graph_builder:
|
|
backend: "networkx" # 轻量级图库
|
|
storage: "sqlite" # 本地存储
|
|
|
|
reasoning_engine:
|
|
type: "hybrid"
|
|
symbolic_engine: "owlready2" # 开源
|
|
neural_engine: "mistral" # 通过API
|
|
```
|
|
|
|
## 🏗️ 资源架构设计
|
|
|
|
### 分层资源配置
|
|
```
|
|
资源分层架构:
|
|
┌─────────────────────────────────────┐
|
|
│ 应用层资源 │
|
|
│ - N8N: 1GB RAM │
|
|
│ - 太公心易UI: 512MB RAM │
|
|
├─────────────────────────────────────┤
|
|
│ 智能体层资源 │
|
|
│ - AutoGen: 2GB RAM │
|
|
│ - 11仙智能体: 共享Mistral API │
|
|
├─────────────────────────────────────┤
|
|
│ 认知中间件层资源 │
|
|
│ - KAG服务: 4GB RAM, 4 CPU │
|
|
│ - 知识图谱: 2GB存储 │
|
|
├─────────────────────────────────────┤
|
|
│ 模型层资源 │
|
|
│ - Mistral API: 免费额度 │
|
|
│ - BGE嵌入: 本地CPU推理 │
|
|
├─────────────────────────────────────┤
|
|
│ 数据层资源 │
|
|
│ - Milvus: 4GB RAM, 20GB存储 │
|
|
│ - MongoDB: 2GB RAM, 10GB存储 │
|
|
└─────────────────────────────────────┘
|
|
|
|
总计: 16GB RAM, 8 CPU, 80GB存储
|
|
```
|
|
|
|
## 🐳 Docker Compose配置
|
|
|
|
### 完整的容器化部署
|
|
```yaml
|
|
# docker-compose.yml
|
|
version: '3.8'
|
|
|
|
services:
|
|
# KAG知识中间件
|
|
kag-service:
|
|
image: kag:latest
|
|
container_name: taigong-kag
|
|
ports:
|
|
- "8080:8080"
|
|
environment:
|
|
- MISTRAL_API_KEY=${MISTRAL_API_KEY}
|
|
- OPENROUTER_API_KEY=${OPENROUTER_API_KEY}
|
|
- KAG_MODE=lightweight
|
|
volumes:
|
|
- ./kag_data:/app/data
|
|
- ./kag_config:/app/config
|
|
mem_limit: 4g
|
|
cpus: 2.0
|
|
restart: unless-stopped
|
|
depends_on:
|
|
- milvus
|
|
- mongodb
|
|
|
|
# Milvus向量数据库
|
|
milvus:
|
|
image: milvusdb/milvus:latest
|
|
container_name: taigong-milvus
|
|
ports:
|
|
- "19530:19530"
|
|
environment:
|
|
- ETCD_ENDPOINTS=etcd:2379
|
|
- MINIO_ADDRESS=minio:9000
|
|
volumes:
|
|
- ./milvus_data:/var/lib/milvus
|
|
mem_limit: 4g
|
|
cpus: 2.0
|
|
restart: unless-stopped
|
|
|
|
# MongoDB文档数据库
|
|
mongodb:
|
|
image: mongo:latest
|
|
container_name: taigong-mongodb
|
|
ports:
|
|
- "27017:27017"
|
|
environment:
|
|
- MONGO_INITDB_ROOT_USERNAME=admin
|
|
- MONGO_INITDB_ROOT_PASSWORD=${MONGO_PASSWORD}
|
|
volumes:
|
|
- ./mongo_data:/data/db
|
|
mem_limit: 2g
|
|
cpus: 1.0
|
|
restart: unless-stopped
|
|
|
|
# N8N工作流
|
|
n8n:
|
|
image: n8nio/n8n:latest
|
|
container_name: taigong-n8n
|
|
ports:
|
|
- "5678:5678"
|
|
environment:
|
|
- N8N_BASIC_AUTH_ACTIVE=true
|
|
- N8N_BASIC_AUTH_USER=${N8N_USER}
|
|
- N8N_BASIC_AUTH_PASSWORD=${N8N_PASSWORD}
|
|
- WEBHOOK_URL=https://your-domain.com
|
|
volumes:
|
|
- ./n8n_data:/home/node/.n8n
|
|
mem_limit: 1g
|
|
cpus: 1.0
|
|
restart: unless-stopped
|
|
|
|
# 太公心易应用
|
|
taigong-app:
|
|
build: ./app
|
|
container_name: taigong-xinyi
|
|
ports:
|
|
- "8501:8501"
|
|
environment:
|
|
- KAG_API_URL=http://kag-service:8080
|
|
- MISTRAL_API_KEY=${MISTRAL_API_KEY}
|
|
volumes:
|
|
- ./app_data:/app/data
|
|
mem_limit: 1g
|
|
cpus: 1.0
|
|
restart: unless-stopped
|
|
depends_on:
|
|
- kag-service
|
|
|
|
# Redis缓存
|
|
redis:
|
|
image: redis:alpine
|
|
container_name: taigong-redis
|
|
ports:
|
|
- "6379:6379"
|
|
volumes:
|
|
- ./redis_data:/data
|
|
mem_limit: 512m
|
|
cpus: 0.5
|
|
restart: unless-stopped
|
|
|
|
# 网络配置
|
|
networks:
|
|
default:
|
|
name: taigong-network
|
|
driver: bridge
|
|
|
|
# 数据卷
|
|
volumes:
|
|
kag_data:
|
|
milvus_data:
|
|
mongo_data:
|
|
n8n_data:
|
|
app_data:
|
|
redis_data:
|
|
```
|
|
|
|
## ⚙️ 环境变量配置
|
|
|
|
### .env文件
|
|
```bash
|
|
# .env
|
|
# API密钥
|
|
MISTRAL_API_KEY=your_mistral_api_key
|
|
OPENROUTER_API_KEY=your_openrouter_key
|
|
COHERE_API_KEY=your_cohere_key
|
|
|
|
# 数据库配置
|
|
MONGO_PASSWORD=your_mongo_password
|
|
REDIS_PASSWORD=your_redis_password
|
|
|
|
# N8N配置
|
|
N8N_USER=admin
|
|
N8N_PASSWORD=your_n8n_password
|
|
|
|
# KAG配置
|
|
KAG_MODE=lightweight
|
|
KAG_LOG_LEVEL=INFO
|
|
|
|
# Milvus配置
|
|
MILVUS_HOST=milvus
|
|
MILVUS_PORT=19530
|
|
|
|
# 应用配置
|
|
APP_ENV=production
|
|
APP_DEBUG=false
|
|
```
|
|
|
|
## 📊 资源监控配置
|
|
|
|
### Prometheus + Grafana监控
|
|
```yaml
|
|
# monitoring/docker-compose.monitoring.yml
|
|
version: '3.8'
|
|
|
|
services:
|
|
prometheus:
|
|
image: prom/prometheus:latest
|
|
container_name: taigong-prometheus
|
|
ports:
|
|
- "9090:9090"
|
|
volumes:
|
|
- ./prometheus.yml:/etc/prometheus/prometheus.yml
|
|
- prometheus_data:/prometheus
|
|
command:
|
|
- '--config.file=/etc/prometheus/prometheus.yml'
|
|
- '--storage.tsdb.path=/prometheus'
|
|
mem_limit: 1g
|
|
cpus: 0.5
|
|
|
|
grafana:
|
|
image: grafana/grafana:latest
|
|
container_name: taigong-grafana
|
|
ports:
|
|
- "3000:3000"
|
|
environment:
|
|
- GF_SECURITY_ADMIN_PASSWORD=${GRAFANA_PASSWORD}
|
|
volumes:
|
|
- grafana_data:/var/lib/grafana
|
|
- ./grafana/dashboards:/etc/grafana/provisioning/dashboards
|
|
mem_limit: 512m
|
|
cpus: 0.5
|
|
|
|
volumes:
|
|
prometheus_data:
|
|
grafana_data:
|
|
```
|
|
|
|
## 💡 成本优化策略
|
|
|
|
### 免费资源最大化利用
|
|
```python
|
|
# 智能API路由配置
|
|
class APIResourceManager:
|
|
def __init__(self):
|
|
self.providers = {
|
|
"openrouter_free": {
|
|
"daily_limit": 200,
|
|
"current_usage": 0,
|
|
"models": ["mistral-7b-instruct:free"]
|
|
},
|
|
"mistral_free": {
|
|
"monthly_limit": 1000000, # tokens
|
|
"current_usage": 0,
|
|
"models": ["mistral-small-latest"]
|
|
},
|
|
"local_models": {
|
|
"unlimited": True,
|
|
"models": ["bge-large-zh-v1.5"]
|
|
}
|
|
}
|
|
|
|
def get_best_provider(self, task_type, complexity):
|
|
"""智能选择最佳提供商"""
|
|
if task_type == "embedding":
|
|
return "local_models"
|
|
|
|
if complexity == "simple" and self.providers["openrouter_free"]["current_usage"] < 180:
|
|
return "openrouter_free"
|
|
|
|
if self.providers["mistral_free"]["current_usage"] < 900000:
|
|
return "mistral_free"
|
|
|
|
# 降级到本地模型
|
|
return "local_models"
|
|
```
|
|
|
|
## 🚀 部署脚本
|
|
|
|
### 一键部署脚本
|
|
```bash
|
|
#!/bin/bash
|
|
# deploy.sh
|
|
|
|
echo "🚀 开始部署太公心易 + KAG + Mistral系统..."
|
|
|
|
# 1. 检查依赖
|
|
echo "📋 检查系统依赖..."
|
|
command -v docker >/dev/null 2>&1 || { echo "请先安装Docker"; exit 1; }
|
|
command -v docker-compose >/dev/null 2>&1 || { echo "请先安装Docker Compose"; exit 1; }
|
|
|
|
# 2. 创建目录结构
|
|
echo "📁 创建目录结构..."
|
|
mkdir -p {kag_data,milvus_data,mongo_data,n8n_data,app_data,redis_data}
|
|
mkdir -p {kag_config,monitoring}
|
|
|
|
# 3. 检查环境变量
|
|
echo "🔑 检查环境变量..."
|
|
if [ ! -f .env ]; then
|
|
echo "请先配置.env文件"
|
|
exit 1
|
|
fi
|
|
|
|
# 4. 启动服务
|
|
echo "🐳 启动Docker服务..."
|
|
docker-compose up -d
|
|
|
|
# 5. 等待服务就绪
|
|
echo "⏳ 等待服务启动..."
|
|
sleep 30
|
|
|
|
# 6. 健康检查
|
|
echo "🏥 执行健康检查..."
|
|
curl -f http://localhost:8080/health || echo "KAG服务未就绪"
|
|
curl -f http://localhost:19530/health || echo "Milvus服务未就绪"
|
|
curl -f http://localhost:5678/healthz || echo "N8N服务未就绪"
|
|
|
|
echo "✅ 部署完成!"
|
|
echo "🌐 访问地址:"
|
|
echo " - 太公心易应用: http://localhost:8501"
|
|
echo " - N8N工作流: http://localhost:5678"
|
|
echo " - KAG API: http://localhost:8080"
|
|
echo " - 监控面板: http://localhost:3000"
|
|
```
|
|
|
|
## 📈 扩展配置
|
|
|
|
### 生产环境扩展
|
|
```yaml
|
|
# 生产环境资源配置
|
|
production_config:
|
|
compute:
|
|
cpu: "16 cores"
|
|
memory: "64GB RAM"
|
|
storage: "500GB SSD"
|
|
gpu: "NVIDIA T4 (可选)"
|
|
|
|
high_availability:
|
|
replicas: 3
|
|
load_balancer: "nginx"
|
|
failover: "automatic"
|
|
|
|
monitoring:
|
|
metrics: "prometheus"
|
|
logging: "elasticsearch"
|
|
alerting: "alertmanager"
|
|
```
|
|
|
|
## 🎯 总结
|
|
|
|
**推荐的资源配置策略:**
|
|
|
|
1. **开发/测试**: 使用免费API + 轻量级部署
|
|
2. **小规模生产**: 混合免费+付费API + 中等资源
|
|
3. **大规模生产**: 私有化部署 + 充足资源
|
|
|
|
**关键配置要点:**
|
|
- ✅ 充分利用免费API额度
|
|
- ✅ 智能路由避免超限
|
|
- ✅ 容器化部署便于扩展
|
|
- ✅ 监控资源使用情况
|
|
|
|
想要我帮你根据你的具体需求调整这个配置方案吗?🤔 |