Files
tts/scripts/analysis/analyze_audio_quality.py
2026-01-19 10:27:41 +08:00

209 lines
6.7 KiB
Python

#!/usr/bin/env python3
"""
Audio quality analysis tool for VoxCPM generated files
Analyzes waveform characteristics to determine if audio sounds human
"""
import os
import numpy as np
import soundfile as sf
import matplotlib.pyplot as plt
from scipy import signal
from scipy.stats import skew, kurtosis
def analyze_audio_file(file_path):
"""Analyze audio file and return quality metrics"""
if not os.path.exists(file_path):
print(f"File not found: {file_path}")
return None
try:
# Read audio file
audio_data, sample_rate = sf.read(file_path)
print(f"✓ Successfully loaded: {os.path.basename(file_path)}")
print(f" Sample rate: {sample_rate} Hz")
print(f" Duration: {len(audio_data)/sample_rate:.2f} seconds")
print(f" Channels: {1 if len(audio_data.shape) == 1 else audio_data.shape[1]}")
# Convert to mono if stereo
if len(audio_data.shape) > 1:
audio_data = np.mean(audio_data, axis=1)
# Basic audio statistics
rms_energy = np.sqrt(np.mean(audio_data**2))
peak_amplitude = np.max(np.abs(audio_data))
zero_crossing_rate = np.mean(np.abs(np.diff(np.sign(audio_data))))
spectral_centroid = calculate_spectral_centroid(audio_data, sample_rate)
skewness = skew(audio_data)
kurt = kurtosis(audio_data)
print(f"\n📊 Audio Statistics:")
print(f" RMS Energy: {rms_energy:.4f}")
print(f" Peak Amplitude: {peak_amplitude:.4f}")
print(f" Zero Crossing Rate: {zero_crossing_rate:.4f}")
print(f" Spectral Centroid: {spectral_centroid:.2f} Hz")
print(f" Skewness: {skewness:.4f}")
print(f" Kurtosis: {kurt:.4f}")
# Quality assessment
quality_score = assess_audio_quality({
'rms_energy': rms_energy,
'zero_crossing_rate': zero_crossing_rate,
'spectral_centroid': spectral_centroid,
'skewness': skewness,
'kurtosis': kurt,
'duration': len(audio_data)/sample_rate
})
return {
'file': file_path,
'sample_rate': sample_rate,
'duration': len(audio_data)/sample_rate,
'rms_energy': rms_energy,
'zero_crossing_rate': zero_crossing_rate,
'spectral_centroid': spectral_centroid,
'quality_score': quality_score,
'quality': 'good' if quality_score > 60 else 'poor'
}
except Exception as e:
print(f"Error analyzing {file_path}: {e}")
return None
def calculate_spectral_centroid(audio_data, sample_rate):
"""Calculate spectral centroid (brightness of sound)"""
# Compute spectrogram
frequencies, times, Sxx = signal.spectrogram(audio_data, sample_rate)
# Calculate spectral centroid
if np.sum(Sxx) == 0:
return 0
spectral_centroid = np.sum(frequencies[:, np.newaxis] * Sxx) / np.sum(Sxx)
return spectral_centroid
def assess_audio_quality(metrics):
"""Assess audio quality based on metrics"""
score = 0
# RMS Energy: Good range for speech is 0.05-0.3
rms = metrics['rms_energy']
if 0.05 <= rms <= 0.3:
score += 20
elif 0.02 <= rms < 0.05 or 0.3 < rms <= 0.5:
score += 10
else:
score += 0
# Zero Crossing Rate: Good range for speech is 0.05-0.15
zcr = metrics['zero_crossing_rate']
if 0.05 <= zcr <= 0.15:
score += 20
elif 0.02 <= zcr < 0.05 or 0.15 < zcr <= 0.2:
score += 10
else:
score += 0
# Spectral Centroid: Good range for speech is 800-2500 Hz
sc = metrics['spectral_centroid']
if 800 <= sc <= 2500:
score += 20
elif 500 <= sc < 800 or 2500 < sc <= 3500:
score += 10
else:
score += 0
# Duration: Speech should be reasonable length
duration = metrics['duration']
if 1.0 <= duration <= 10.0:
score += 20
elif 0.5 <= duration < 1.0 or 10.0 < duration <= 15.0:
score += 10
else:
score += 0
# Skewness and Kurtosis: Should be moderate for natural speech
skewness = abs(metrics['skewness'])
kurtosis = abs(metrics['kurtosis'])
if skewness < 2 and kurtosis < 10:
score += 20
elif skewness < 5 and kurtosis < 20:
score += 10
else:
score += 0
return score
def analyze_directory(directory):
"""Analyze all audio files in a directory"""
if not os.path.exists(directory):
print(f"Directory not found: {directory}")
return
print(f"\n{'='*60}")
print(f"ANALYZING AUDIO FILES IN: {directory}")
print(f"{'='*60}")
audio_files = [f for f in os.listdir(directory) if f.endswith('.wav')]
if not audio_files:
print("No WAV files found")
return
results = []
for audio_file in audio_files:
file_path = os.path.join(directory, audio_file)
result = analyze_audio_file(file_path)
if result:
results.append(result)
print(f" Quality Score: {result['quality_score']}/100 ({result['quality']})")
print(f"{'='*60}")
# Summary
if results:
good_files = [r['file'] for r in results if r['quality'] == 'good']
poor_files = [r['file'] for r in results if r['quality'] == 'poor']
print(f"\n📋 Summary:")
print(f"Total files analyzed: {len(results)}")
print(f"Good quality files: {len(good_files)}")
print(f"Poor quality files: {len(poor_files)}")
if good_files:
print("\nGood quality examples:")
for f in good_files[:3]:
print(f" - {os.path.basename(f)}")
if poor_files:
print("\nPoor quality examples:")
for f in poor_files[:3]:
print(f" - {os.path.basename(f)}")
if __name__ == "__main__":
# Analyze both accent demo directories
analyze_directory("accent_demos")
analyze_directory("accent_demos_optimized")
# Also analyze the reference audio files
print(f"\n{'='*60}")
print(f"ANALYZING REFERENCE AUDIO FILES")
print(f"{'='*60}")
reference_files = [
"reference_indian.wav",
"reference_russian.wav",
"reference_singaporean.wav",
"reference_hongkong.wav",
"reference_cantonese.wav",
"reference_indian_opt.wav",
"reference_russian_opt.wav",
"reference_singaporean_opt.wav",
"reference_hongkong_opt.wav",
"reference_cantonese_opt.wav"
]
for ref_file in reference_files:
if os.path.exists(ref_file):
analyze_audio_file(ref_file)
print(f"{'='*60}")